
Aneka Tutorial Series

Using the Design Explorer

Christian Vecchiola and Xingchen Chu

Abstract
This tutorial describes the Aneka Design Explorer and explains how to
quickly prototype parameter sweeping applications that runs on the
Aneka Cloud. It illustrates the features of the user interface
environment shipped with the Design Explorer and provides a step by
step guide on how to compose applications and monitor their
execution on the Aneka Cloud. After having read this tutorial the
users will be able to develop their own parameter sweeping
applications with the Design Explorer.

Document Status

Creation Date: 08/28/09

Version: 0.1

Classification: User

Authors: Christian Vecchiola, Xingchen Chu

Last Revision Date: 08/28/09

Status: Draft

1. Prerequisites

In order to fully understand this tutorial the user should be familiar with the general
concepts of Grid/Cloud Computing and the XML language.

The practical part of the tutorial requires a working installation of Aneka. The common
Aneka distribution contains the Design Explorer.

2. Introduction

The Design Explorer is an integrated environment that allows user to quickly prototype
distributed applications based on the Parameter Sweeping model. Users can easily
identify the logic and the data of the distributed application by using a sequence of
steps that guides them in composing the distributed application. In this tutorial we
will: first and then illustrate the features of the Design Explorer

• characterize the nature of the Parameter Sweeping applications

• illustrate the features of the Design Explorer

• provide a step by step guide on how to create an application with the Design
Explorer

Figure 1. Application Scenario.

Figure 1 describes the common scenario in which the Design Explorer is used. A user
interact with the user interface provided with the Design Explorer, composes the
parameter sweeping application and then submits the collection of jobs that represent
the application to the Aneka Cloud. By using the same interface the user can control
the execution of the application and control the status of the jobs.

The Design Explorer can also work in stand-alone mode. In this case it is only possible
to compose the parameter sweeping application. For executing it, it is necessary a live
connection to the Aneka Cloud.

3. Parameter Sweeping Applications

3.1 Definition and Characteristics

A parameter sweeping application is a kind of distributed application that is defined by
a template task characterized by a set of configurable parameters. The template task
identifies the set of operations that define the computation. The configurable
parameters represent the way in which the template task is specialized. Each of these
parameters could have a different domain and users want to explore the behavior of

the template task for all the possible values of the parameters. The exploration of the
parameter values generates a variable number of tasks representing the jobs of the
parameter sweeping application. Every single job represents an executable entity with
a specific parameter setting.

Parameter sweeping applications are quite common in different areas such as scientific
computing and finance. They represent the most intuitive way to provide distributed
support for legacy applications designed to run on a single machine.

For example, in the field of scientific computing the project can be1 considered as a
kind of parameter sweeping application. SETI (Search for Extra Terrestrial Intelligence)
@home is a project aimed at detecting intelligent life outside Earth by analyzing the
radio frequency signals coming from the space. The range of signals to explore, the
observation time, and the portion of the sky covered make up a huge amount of data
to analyze. This data is divided into chunks that can be analyzed in parallel by the
same application. In this case the template task is represented the by the application
and the configurable parameters identify the specific chunk of data to analyze.

In general there exist a large number of legacy applications that are controlled by a
set of parameters. All these applications, can take advantage of the parameter
sweeping model in order to distribute the execution and explore the entire parameters
domain in a more effective way.

3.2 Example

Figure 2 describes the process of generating the jobs from a template task that is
characterized with parameters. A common template task can composed by the
following elements:

• One or more executable applications that define the sequence of operations
that are performed by the template task.Parameters representing the variable
elements in the template tasks that specialize its behavior. The parameters can
characterize different elements such as: command switches, input and output
file names, and also file content.

• Input files. They can be data files, configuration files, or executable
applications.

• Output files. They generally are the outcome of the computation of the
template task as a whole.

• Parameters representing the variable elements in the template tasks that
specialize its behavior. The parameters can characterize different elements such
as: command switches, input and output file names, and also file content.

• Input files. They can be data files, configuration files, or executable
applications.

• Output files. They generally are the outcome of the computation of the

1 More information can be found at: http://setiathome.berkeley.edu/

template task as a whole.

Figure 2. Job Generation from a Template Task.

The number and the specific domains of the parameters determine the number of jobs
that compose the parameter sweeping application. In the example shown in Figure 2, a
simple data analysis application is considered. The template task runs two console
application in sequence and it is controlled by three different parameters. It takes
three input files and produces one output file. The output of the task is the result of
the chained execution of analyze.exe and filter.exe as described in the template task.
As shown in the figure, analyze.exe takes as input a command switch identified by the
$m parameter, the file input_$n.dat and produces the output temp_$m_$n.dat. The
filter application takes as input the command switch $m, the temp_$m_$n.dat file
previously generated and a random seed number identified by the $seed parameter. It
produces the output files output_$m_$n.dat representing the outcome of the task.

The scenario that this parameter sweeping application explores is identified by all the
possible combinations of the the two parameters $n and $m2. The former identifies
the specific chunk of data processed while the latter represents the specific processing

2 The random parameter $seed is not considered in the scenario since it does not define a dimension of the
problem but simply represents an random runtime value used to initialize the filter.exe application.

mode used. The set of all the combinations can be expressed as

C: [0,...,N] x [m1, m2, mx]

and generates a number of task that is equal to 3 x (N+1). For each of the points that
belong to the scenario C a specific job is generated where the occurrences of all the
parameters defining the scenario are substituted by the corresponding parameter
values. In the example considered, there also exists a random parameter $seed that
does not belong to the scenario but it is simply generated at run time. These jobs are
then executed and the results are collected.

3.3 Parameter Sweeping Support within Aneka

Different distributed infrastructure provide different run time support for parameter
sweeping applications. For this reason, while parameter sweeping applications are a
general model there exist no standard language or format to represent the template
task and the parameters. The specific support provided by the distributed
infrastructure on top of which parameter sweeping applications are run determines the
set of operations available to the end user to compose the template task.

In the case of Aneka the parameter sweeping applications are expressed by using the
Parameter Sweeping Model (PSM) that is modeled on top of the Task Programming
Model3. The task programming model structures a distributed application as a
collection of independent tasks that can be executed in any order. A task is a generic
execution unit that can have input and output files, these files are automatically
moved in and out of the Aneka cloud when needed.

The Aneka PSM APIs provide the logic for creating the sequence of task instances (jobs)
from a template task given the parameters domains. They automatically submit these
tasks to the Aneka Cloud and collect back their results that are then presented to the
user through the Design Explorer. This particular design, strongly influences the set of
operations that are available to the user: for example it is not necessary, as happens
in other parameter sweeping models, to specify data movement in the task template
but input and output files are automatically moved by Aneka. Moreover, the Aneka PSM
APIs provide a set of ready to use commands that can be used to compose the
template task of the application. These are:

• Copy command: makes a copy of a file on the remote node.

• Delete command: deletes a file on the remote node.

• Execute command: executes a command on the remote node.

• Substitute command: substitutes the occurrences of the parameters with their
run time values into a file.

• Environment command: sets a collection of environment variables in the shell
used to execute the template task on the remote node.

3 For more details about the Task Programming Model please see the Tutorial: Developing Task Model
Applications in the Aneka distribution or available from the Manjrasoft website.

These commands are specific GridTask instances and any other used defined GridTask
types can be used to define a template task of parameter sweeping applications.

NOTE: The support provided at programming level for Parameter Sweeping
Applications is more powerful and advanced then the one provided
through the Design Explorer. The template task defining prototype
of jobs is modeled as an instance of the CompositeTask class that is
characterized by a list of GridTask instances executed in sequence.
Hence, by program any GridTask inherited class can be used to
compose the task template. By using the Design Explorer it is only
possible to compose the tasks by using the five commands listed
above, for which a full GUI support has been provided.

4. Design Explorer

The Design Explorer is integrated environment for quickly prototyping Parameter
Sweeping applications, controlling and monitoring their execution on Aneka Clouds. It
is an environment where user can create, open, and save a project representing their
Parameter Sweeping applications. By using a simple step by step wizard users can
visually prototype the structure of the template task that will be used to generate all
the jobs run on the Aneka Cloud. The template can be saved into a project and run
within the environment itself, through which it is possible to monitor its execution and
collect some useful statistics.

Figure 3. Design Explorer User Interface

The Aneka Design Explorer is located in the bin directory of the Aneka installation

([Programs Folder]\Manjrasoft\[Aneka Version]\bin) and it is accessible from the Start
→ All Programs → Manjrasoft → [Aneka Version] → Design Explorer menu item.Figure
3 shows the user interface of the Design Explorer. The menu provides easy access to all
the features of the environment:

• File menu: provides access to the project wide operations such as create, open,
save (and save under a different name) a project.

• Edit menu: provides access to the options panel where the user can set the
credential information required to access the Aneka Cloud.

• Help menu: provides access to this documentation and a brief information dialog
box about the Design Explorer itself.

The user interface also features a tool bar that contains the most commonly performed
operations (new project, open project, save project, and help). The remaining part of
the window constitutes the workspace where the project windows are hosted.

4.1 Creating a Parameter Sweeping Application

In order to create a new Parameter Sweeping application it is necessary to create a
new project. This can be done by clicking the leftmost icon in the toolbar representing
a blank sheet or selecting the File → New... menu item.

 4.1.1 Application Information

Figure 4 shows the first page of the Aneka Job Wizard that is activated by the previous
operation. In this page the user is requested to enter some general details of the
application being created such as a name, a description, and the workspace directory.

Figure 4. Aneka Job Wizard: Application Details.

On the left side of the wizard it is possible to see all the steps that will be covered in
order to define the task template of the Parameter sweeping application. The bottom
area of the wizard contains the navigation controls that allow users to move back and
forward through the pages of the wizard. It is important to notice that the wizard has
an incremental configuration. This means that only the pages that have been
successfully validated for what concerns the user input can be accessed and passed
over. Once a page is successfully validated or accessed its corresponding name on the
left side of the wizard has a blue color and it is possible to directly access to it by
clicking on it.

 4.1.2 Parameter Definition

Once the user has successfully entered the detail of the application can press the Next
button and move to the Parameters page where he/she can define all the parameters
that control the application.

Figure 5. Aneka Job Wizard: Parameter Definition.

Figure 5 shows the Parameters page. It shows the list of parameters currently defined
for the application. A parameter is defined by three elements:

• Name: represents the name of the parameter that is used to identify it in the
task template.

• Type: defines the type of parameter.

• Value: identifies the value or the values that the parameter can have according
to its definition.

By using the Add, Delete, and Clear buttons the user can add a new parameter, delete

the ones currently selected or all the parameters. The Design Explorer allows defining
four different types of parameters:

• Single: represents a parameter that can assume one single value. The underlying
type of the parameter is string.

• Random: represents a parameter that can assume a random value within a range
limited by a lower and an upper bound. The parameter is a real number.

• Range: represents a parameter that can assume a discrete set of values within a
limited range and that are generated by starting from the lower bound and
adding a step. The parameter is an integer number.

• Enum: represents a parameter that can assume a discrete set of values that are
defined by the user. The underlying type of the parameter is string.

For all the parameters described above a name is mandatory while the user can enter
an additional comment that specifies the role of the parameter.

Figure 6. Aneka Job Wizard: New and Edit Parameter Modes.

Figure 6 shows the dialog used to add or edit the properties of a parameter. This dialog
shows up if the user presses the Add button (New mode) or clicks on the row header of
one of the existing parameters shown in the list (Edit mode). An interesting option is
the Keep open flag that is visible only in the new mode. This feature, when selected,
allows adding more than one parameter by keeping the dialog open after pressing the
Add button. The Add or Update buttons also verify that the data entered by the user is
valid.

 4.1.3 Configuring Shared Files

The template task is generally composed by a sequence of operations. Some of these
operations can be the execution of console commands or legacy applications. In this
case they are most likely to be the same for all the job instances generated from the
template task.

The Design Explorer provides the facility of specifying a collection of files that can of
different nature (executable, data files, scripts, etc..) and that are required for

executing every job instance. For example they can represent a database file, the
legacy application of an execution command, or something else. These files are
automatically transferred by the infrastructure in a transparent manner and made
available on the remote node for the job instance.

Figure 7. Aneka Job Wizard: Shared Files Page.

Figure 7 shows the Shared Files page. In this page user can select files located in file
system reachable from the local machine by pressing the Browse button and add them
as shared files by pressing Add. By clicking the Check whether the file exists flag it is
possible to verify the existence of the file in the file system before adding it.

 4.1.4 Input and Output Files

The next two steps allow users to specify input and output files for each of the job
instances. Differently from the shared files, input and output files can be specialized
with parameters. This means that the real name of the file is generated and checked
at runtime by the PSM engine.

In order to quickly compose the name of the file (input and output) at the top of the
two pages there is a combo box followed by a list that allows users to select the
specific parameter that they want to pick in order to compose the file name. Once
selected the parameter, the wizard will automatically generate a placeholder for the
parameter that will be replaced at runtime by the parameter value. The placeholder
takes the form ($parameter_name) and it is inserted at the current location of the
cursor in the Input/Output file text box.

It is possible to have three different views for the parameters:

• All parameters: shows all the available parameters.

• User parameters: shows only the parameters defined by the user in the task
template.

• Special parameters: shows only the system parameters that are available by
default for each job instance. At the moment only the Task Id (Job identifier)
parameter is available in this list. Special parameters are characterized by a
leading $ in the parameter name that makes them reserved words.

The first option shows both users and special parameters.

Once the file name is composed it can be added to the list of input/output files by
pressing the Add button. The file name will be added to the list and checked for its
name in order to verify that any parameter placeholder typed by hand is in the correct
form. The valid column of the list alerts the user about possibly wrong file names.
Once the user has entered all the files, by pressing the Next all the files are checked
and an error message box is displayed for those that are not valid. Figure 8 shows the
Input and Output files pages.

Figure 8. Aneka Job Wizard: Input and Output Files pages.

 4.1.5 Task Template Commands

The final step for defining a task template is specifying the sequence of operations
that characterize will be executed on the remote node for each of the job instances.
This is the last step because the sequence of commands can make use of all the
previous elements: parameters, shared, input, and output files.

Figure 9 shows Commands page. The users can select among five different ready to use
commands:

• Copy command (CPY): this command completely executes on the remote node
and copies a file to another file under a different name but always on the same
node. Other implementations of the parameter sweeping model use the copy
command to move files from the local client machine to the remote node. With
Aneka this task is transparently done and there is no need to do that explicitly
in the task template.

• Delete command (DEL): deletes a file on the remote node.

• Execute command (EXE): executes a shell command or console application on
the remote node.

• Substitute command (SUB): substitutes the occurrences of the parameters with
their run time values into a file.

• Environment command (ENV): sets a collection of environment variables in the
shell used to execute the template task on the remote node.

Each of the commands has a specific configuration dialog to compose the command.
From these dialogs it is possible to pick up the parameters as explained in the previous
sections and the files. All of the dialogs feature an additional tab containing the a list
of the files that have been previously entered by the user; they can be filtered by
selecting all the files, shared files, input, or output files.

Figure 9. Aneka Job Wizard: Commands Page.

 4.1.6 Finalizing the Task Template

The creation of commands is the last step for creating the template. Figure 10 shows
the Job Completion page. The user is presented with different options:

• It is possible to save the task template into an XML file. This is accomplished by
providing a name into the Save path text box or by pressing the Browse button
to look for an existing file. Once the name is set, it is possible to press the Save
button.

• It is possible to directly edit the XML source file of the task template. This is

accomplished by clicking the Edit button. This feature is only available on the
.NET/Windows version; when the code is compiled for the Mono environment an
informative message is displayed in place of the XML editor that allows to
modify the source of the template.

• It is possible (default action) to open a project and run the parameter sweeping
application into the Design Explorer . This option is checked by default and opens
up a Project Window through which the users can monitor and execute and
modify the template.

Figure 10. Aneka Job Wizard: Job Completion Page.

By pressing the Finish button if the Execute Job on Finish is checked the project
window is open otherwise the entire template goes lost if not saved into an XML file.

4.2 PSM File Structure

The Design Explorer provides a way to serialize into an XML its data. It is possible to
save only definition of the task template as a Parameter Sweeping Model file (*.psm)
or to save the entire project into a file as an Aneka Parameter Sweep Project file
(*.wbch). The project file is meant to be contain additional data that define the
project itself and not only the task template, while the PSM file simply contains the
task definition4. It is also possible to create a Design Explorer project by starting from
a PSM file; in this case the designer will automatically add the missing information and
convert the format.

Figure 11 shows the relationship between the two formats. Since this information is
subject to change when more features will be added to the Design Explorer we will
only concentrate on the description of the PSM file structure that is also the one used

4 At the moment the only difference are few enclosing nodes that wrap the content of the PSM file and
maintain the name of the project.

by the PSM API exposed by Aneka.

Figure 11. Aneka Parameter Sweep File and Parameter Sweeping Model File.

The entire structure and content of the PSM file used to illustrate the creation process
of the Task Template is depicted in Figure 12. There exist one root node whose tag
name is psm that contains the following elements:

• name node: contains the name entered in the first step of the wizard for the
parameters sweeping application.

• description node: contains the description of the parameter sweeping
application.

• workspace node: contains the path to the workspace for the application
execution.

• parameters node: contains a collection of nodes that identify all the parameters
that have been defined. These nodes all have the name, type, and comment
attributes and can be of the following type:

• single node: identifies a single parameter. It contains an additional attribute
(value) representing the value of the parameter.

• range node: identifies a range parameter. This parameter has three
additional attributes that represent the lower bound (from), the upper
bound (to) of the range, and step (interval) used to generate numbers.

• random node: identifies a random parameter. This parameter has two
additional attribute that represent the lower bound (minValue) and the
upper bound (maxValue) used to define the range from which numbers are
randomly picked.

• enum node: identifiers an enum parameter. It contains a list of value nodes
defining the elements of the enumeration set.

Figure 12. PSM File Content.

• sharedFiles node: contains a list of file nodes representing the information to
locate and safely copy the files from the local file system to the remote node.
The file node has two attributes path and vpath. The first contains the local
path of the file, while the second identifies the path on the remote node that is
merely represented by the file name of the file.

• task node: contains the definition of the input and output files and the
operations that have to be performed on the remote node for each of the job
instances. This node has three major nodes:

• inputs node: contains a list of file nodes representing the input files.

• outputs node: contains a list of file nodes representing the output files.

• commands node: the possible nodes contained in this node are the following:

• copy node: stores the information related to the copy command. It
contains two attributes src and dest that respectively represent the

source path to the file and the target path to copy.

• delete node: stores the information related to the delete command. It
contains only one attribute file representing the path to the file to
delete.

• execute node: stores the information related to execute command. It
contains two attributes cmd and args thar respectively represent the
command to execute and its arguments.

• substitute node: stores the information relate to the substitute
command. It contains two attributes src and dest that respectively
represent the original path to the file and the path to the new file with
the occurrences of parameters replaced with the corresponding values.

• env node: stores the information about the environment variables. It
contains a variables node featuring a list of variable node whose
attributes name and value respectively identify the name and the value
of the environment variable to set.

By editing directly the PSM file it is possible to change the content of the task
template without the support of the Design Explorer. This opportunity can be exploited
by other applications that as a result of their execution can produce PSM file that can
be used in the Design Explorer.

4.3 Managing and Executing Parameter Sweeping Applications

Once the user has created the task template the Design Explorer will open a project
window that allows modifying the template and running the corresponding parameter
sweeping application.

Figure 13. Project Window.

 4.3.1 Project Window Layout

Figure 13 shows the project window. The same window is obtained if the user selects
File → Open... and chooses a .wbch or .psm file. There are three main areas in the
project window that is worth noticing:

• left pane: the left pane features a tree view where the users can see and
modify the definition of the task template. By clicking on the nodes of the tree
at the bottom of the pane it is possible to see the properties of each node and
modify those that are not read only.

• right pane: the right pane is composed by two tabs and hosts a dynamic view of
the parameter sweeping application while it is running on the Cloud. More
precisely, the Jobs tab hosts the list of jobs generated by the parameter
sweeping application, the Stats tab collects some statistics about the whole
application and estimates the completion time.

• bottom panes: the bottom panes contain two consoles. The Output console
contains the log of the PSM engine while the Error console dumps all the errors
occurred while interacting with Aneka. These two console are only active while
the application is running and the user can save their content by pressing the
Save button.

The project window also contains a toolbar that shows the location of the project file
and some buttons to save the project, control its execution, and control the
appearance of the window. At the bottom of the window a statusbar contains the some
additional information about the project such as:

• Save status: a floppy disk indicates whether the project has been saved since
the last changes have been applied. If the icon representing the floppy disk is
blue the project has to be saved, if the icon is black the project has been saved.

• Running status: a small ball icon indicates whether the project is running or not.
A blue color indicates that the application is idle and has not been run yet. A
green or yellow color indicates a running application: if the color is yellow some
error occurred, while a green color stands for a flawless run. A red color
indicates a permanent failure.

• Project information: the last icon in the statusbar provides access to some
information about the project itself. At the moment the information displayed
when clicking the icon are limited to the name of the project and the location
of the corresponding project file.

• Contextual information: the portion of the statusbar following the icons is used
by the Design Explorer to provide information about the last action performed.
The user can quickly have a look at this area to know what was the last task
performed by the environment for that project.

The layout of the project window can be changed by hiding some of the panels that
compose it. In particular the bottom panes and the left pane can be hidden by clicking
the collapse icon at the top right edge of the pane header. When the left pane is

hidden the icon in the toolbar becomes active and by clicking it it is possible to
restore the pane. The same applies for the bottom pane that is controlled by the icon

 in the toolbar.

 4.3.2 Editing the Task Template

If the project is not running the user can still edit the parameters of the task
template. As shown before, the project window provides users with a tree view where
it is possible to browse the structure of the task template. The structure of the tree is
similar to the one of the XML file that stores the information of the template. Hence
users can intuitively look for the elements they want to change.

Figure 14. Project Content: Task Template Structure.

Figure 14 shows the content of the left pane of the project taken as case study. There
are two main areas: the top area that shows the structure of the task template and the
bottom area providing contextual information about the tree node that is selected in
the top area. All the properties in the bottom area that are showed in bold can be
changed, those who are grayed not.

The content of the task template can only be changed if and only if the project is not

running.

NOTE: The capability of changing the configuration of the task template
from the project window is limited and has to be performed with
care. Differently from the wizard the left pane does not perform
all the checks against the values entered by the user and it is very
easy to make mistakes that compromise the execution of the
application. For example, while editing the elements that involve
parameter placeholders there is no check to ensure that the new
value entered by the user is legally valid and this will make the
application not run properly. For this reason, this feature has to be
used very carefully and to for example change the name of files,
the bound values of range parameters or random parameters, or
the value the value of single and enum parameters

 4.3.3 Connecting to Aneka

In order to execute a project it is necessary to authenticate against the Aneka Cloud.
The user has to provide the access point to the cloud and valid user credentials. This
can be done by selecting Edit → Preferences... . Figure 15 shows the dialog where the
user can customize the connection to Aneka.

Figure 15. Aneka Connection Form.

In order to connect to Aneka the Design Explorer need to know the access point to the
Cloud. This is a simple address composed by three components:

• Internet address: an internet address (IP or DNS name) representing the address
of the access point of the Aneka Cloud. If the access point to the Cloud is
installed on the local machine the user can enter localhost.

• Connection port: the port number where the access point to the Cloud is
listening for connections. By default Aneka listens on the 9090 port but during
setup this information can be changed. Hence, it is important that user know
what is the correct port number.

• Service name: the name of the service that is exposed by the access point to the
Cloud. This is always Aneka and must not be changed.

The rest of the information required are the user credentials that are constituted by

the user name and the password of a valid Aneka user. This information must be known
in order to access the Cloud.

Once the user has entered valid information he or she can click the OK button to save
them into the Design Explorer.

NOTE: The information about the connection to Aneka are not per project
but are a property of the Design Explorer. This means that if the
user is running multiple projects at the same time they will run on
the same Aneka Cloud under the same user. It is possible to start
one project, change the connection details, and then start another
project in order to have a per project setting but this practice is
not considered safe.

 4.3.4 Running the Project

Once the user has opened or created a new project he or she can run It by clicking the
play icon in the project window toolbar. As long as the project is running the run
icon shows the stop symbol and by clicking on it is possible to terminated the
execution of the project. Once the project naturally terminates or it is stopped the
Design Explorer will automatically restore the play icon.

Once the user run the project and there are no problems in connecting with the Aneka
Cloud the Parameter Sweeping application starts and the two tabs on the right pane
are filled with information about the running application. In particular, the application
will generate all the jobs from the template task and the PSM engine will queue them
to the Aneka Cloud for their execution. At this point the Jobs tab will contain the list
of all the jobs of the application while the Stats tab will feature a pie chart together
with some time statistics about the medium time spent by the job in each status
allowed by the system.

From what concerns the execution itself a subdirectory in the workspace folder
specified in the project will be created in order to store all the output files of the
current application execution. The name of this directory is composed as follows:

PSM – Project Name_GUID

Where GUID is a Globally unique identifier automatically generated by the PSM engine
and ensured to be unique in the world. Each time the same project is run a new folder
with a new value of the GUID component is created in the workspace of the project.
This avoids that the results of different runs clash in the same folder.

While the project is running most of the activity is concentrated in the right pane of
the project window that hosts two tabs: Jobs Tab and Stats Tab. The bottom part of
the project window is occupied by two consoles that simply track the messages and the
errors generated by the system. In the next three sections we will illustrate the
features of these components.

 4.3.5 Jobs Visualization

The Jobs Tab is the main view of the application running. It gives you a complete view
of all the jobs generated by the application and shows their current status.

Figure 16. Design Explorer Jobs Tab.

Figure 16 shows the content of the Jobs tab while the application is running. The jobs
are identified by an icon and a friendly name that is automatically generated by the
PSM engine. The icon identifies the status of the job. Here is the list of the different
states in which a job can be:

Unsubmitted
The job has not been submitted to the Aneka Cloud yet. When
the Parameter Sweeping application starts all the jobs are in this
state.

StagingIn
The PSM engine is uploading input files to the Aneka Cloud. This
state appears if and only if the task template has some input files
defined.

Queued
The job has been submitted to the Aneka Cloud and has been put
into the scheduler queue. At this stage the job is not running but
it is waiting to be dispatched to a resource for executing.

Running
The job has been dispatched to some node and it is running. The
Aneka Cloud is then waiting for its completion to collect the
results and send them back to the scheduler.

StagingOut
The job has completed successfully its execution and the results
have been collected and put into the Aneka Cloud storage. The

PSM engine is downloading the output files of the job to the local
machine. This state only appears if the task template defines
some output file.

Completed
The job is completed and all the output files, if any, have been
downloaded to the local machine. This state identifies a
successful completion.

Failed
The job is failed. This is state can imply different things: the job
execution has failed or there has been an error while moving the
job to or within the Aneka Cloud that caused its failure.

Aborted
The job has been aborted by the user. This generally happens
when the user stops the execution of a specific job or stops the
execution of the entire application. The job can fall into this
state even if staging in of files fails.

The jobs tab also features a set of controls that information that can simplify the
management of large number of jobs. In this case there are only 34 jobs generated and
they can fit within the same window. In case the number of jobs is huge an additiona
navigation control shows up at the bottom of the Jobs tabs that helps the user to
navigate between the pages into which the collection of jobs is divided.

Figure 17. Jobs Navigation Control.

The control allows user to quickly move to the first and the last page and to browse
the pages by moving back and forward or simply entering the number of the page to
view.

The bottom area of the Jobs tab is completed by an informative text containing the
number of all the jobs generated on the left and two icons on the right side. These two
icons provide some information about the status of the Job Manager) and the
visualization settings of the Jobs tab (such as the current view mode, the total number
of jobs, and the number of jobs per page) . The Jobs tab can also filter the list of
Jobs according to their state in order to show only the interesting information for the
user. In order to do so it is possible to right click with the mouse on the white area
containing the Jobs and select the Filter item from the context menu that appears.

Figure 18 shows a possible configuration of the context menu. In the figure all the
possible states are selected. The user can individually select the states that want to
browse or click on the All or None options that respectively show all the jobs or none
of them. The Jobs Tab also allows to select a different visualization mode and Figure

19 shows the possible options under the View submenu of the same context menu.

Figure 18. State Filter Context Menu.

Figure 19. List View Mode Menu.

It is possible to use a simple list, a tiled view, a small or a large icons view. The last
two options organize the jobs into classes that map to their state and provide a
classified view of all the jobs.

 4.3.6 Statistical Data

The Stats tab provides users with a statistical view of the application. In particular it
collects the statistics of the execution and shows an overall view of the job state
distribution by means of a pie chart.

Figure 20. Stats Tab.

Figure 20 shows the content of the Stats tab while the project is running. As it can be
noticed the tab is divided into three major areas:

• Pie chart: the chart shows the jobs composition while the application is
runnning. As long as new jobs change their state the pie chart is updted. Each
state is shown in a different color and all the jobs with the same state are
grouped together in the same pie slice.

• Details panel: this panel gives the break down of the jobs composition by
showing for each state how many jobs are in that state and the total number of
jobs. The panel also provides some very basic time estimates and the elapsed
time since the application started. Users can also control the collection interval
of the data, the default value is set to 3000 ms but according to the nature of
the jobs a longer or shorter interval can provide a better refresh.

• Bottom area: the bottom area contains two elements a control button that is
used to show or hide the details panel and an icon that allows users to show
the legenda for the pie chart. This icon is only active while the application is
running.

Except for showing and hiding the details pane this tab does not provide any
interesting interaction but it is useful for having a global view and a detailed view of
the application.

Figure 19 shows the dialog that pops up when the user
clicks on the icon at the bottom of the Stats tab.
The dialog contains a legenda that maps the colors
used in the pie chart with the state values of the jobs.
The state names are written in each of the slices that
are currently composing the pie chart. By using the
legenda it is possible to see all the available colors
even those who are not present in the pie char because
there is no job in that state. Figure 21. Pie Chart Legenda.

The legenda acts as a modal dialog. This means that the entire user interface is
blocked until the legenda is open. In order to interact with any other control in the
GUI of the Design Explorer it is necessary to close the legenda.

 4.3.7 Analyzing the Console

The bottom pane provides user with access to two console: Output Console and Error
Console.

The Output Console is used to log the interaction of the Design Explorer with the
Aneka Cloud while running the application, while the Error Console is used to trace all
the errors that occur during the interaction. The user can switch between the two
console by clicking the corresponding buttons at the bottom of the pane.The Output
Console logs the interaction of the Design Explorer with Aneka. In particular what is
interesting is the tracking the status change of the different jobs while they are
executed in the Aneka Cloud. Figure 22 shows the an example of the content of the
Output Console. While the Jobs and Stats tabs provide a visual information about the
execution of the application, the console shows detailed text information about state

transitions and the identifier of the nodes where each of the job is executed. This
information can then be saved to file by pressing the Save button, while the Clear
button can be used to clean the console.

Figure 22. Design Explorer Output Console.

T h e Error Console mostly traces exception occurred during execution and error
messages. The information displayed about exceptions are the following:

• Exception type: the .NET type of the exception occurred at program level.

• Exception message: informative message describing the nature of the exception.

• Stack trace: the exact point in the execution stack where the exception has
occurred.

This information, except for the exception message, are not of a great help but can be
used to provide an helpful feedback to the Aneka development team for dealing with
the problem.

Figure 23. Design Explorer Error Console.

Figure 23 shows a possible content of the Error Console. As an example the error

occurring if the user does not provide a valid connection information is reported. As
happens for the Output Console the user can save the content of the Error Console to a
file by pressing the Save button.

5. Example

In this section we will guide the user to create a simple parameter sweeping
application that can be used to demonstrate the features discussed so far of the Design
Explorer. In order to simplify the example we will use a ready to use application from
the biology field that is called BLAST.

5.1 BLAST

BLAST (Basic Local Alignment Search Tool) is a tools for looking for similarities between
a given sequence of genes and those stored into classified databases. The BLAST
application is available for download from the National Centre for Biotechnology
Information (NBCI)5 website that also provides a classified repository of all the
databases that can be used to search for similarities. The role of these databases is
really important since it is one of the most important knowledge repository for genome
sequences and helps researchers to identify and study sequences of genes.

 5.1.1 BLAST Distribution

BLAST is a set of tools that allows performing advanced queries against genome
databases and it is available for different platforms (Windows, Linux, Mac OS X, …). In
this simple example we will concentrate our attention only on one component that is
blastall, which performs the basic search for a genome sequence into a given
database.

 5.1.2 Executing a BLAST Query

In order to search a given database it is necessary to prepare (format) it properly.
Another tool in the BLAST distribution allows formatting the database in a way in which
the searches made by blastall are possible: formatdb. This tool takes as input a
database file and create a set of file indexes that are used by the blastall application.
Once these indexes are created the original database file is not required anymore.

The search of a specific sequence of genes against a given database is then performed
by the following steps:

• download the BLAST distribution (blastall, formatdb) from the NCBI website

• download the <database> file from the NCBI website

• execute: formatdb -i <database> -p F -o T

• execute: blastall -p blastn -d <database> -i <sequence> -o <result>

5 www.ncbi.nlm.nih.gov/BLAST/

where:

• <database> is the database file name downloaded from the NCBI website

• <sequence> is the file name of the sequence of genes to look for

• <result> is file name where the result of the search are stored

The content of the <sequence> file is basically a sequence of characters representing
the genes we are looking for. An example of the content of this file is the following:

>Test

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA

TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACC

ATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAG

CCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAA

GTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCC

AGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGATGATTG

AAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTT

The content of the <result> file is a list of hits in the selected database.

 5.1.3 Parallelizing a BLAST Task

There are many way to parallelize a BLAST query against a database. In this simple
example we will use the Parameter Sweeping Model in order to automatically perform
multiple BLAST queries against the same database over a distributed infrastructure.

Since the database is the same it can be initially prepared for the search by performing
the formatdb operation offline. Hence, the only operation that will be distributed will
be the blastall command that will cover different sequence files.

An alternative approach that can be taken is to perform the search operation against
multiple databases. In this case the since the database changes it becomes a
parameter of the application and the formatdb operation has to be done as an execute
task of the job that is distributed.

Within the context of this example we will only consider the first approach and we will
use as search database the one containing the gene sequences of the Escheria Coli
(ecoli.nt) available from the NCBI website.

For convenience all the files required to run the example are provided in the following
folder:

[Program Files]\Manjrasoft\[Aneka Version]\examples\Tutorial\Parameter Sweeping Model\BLAST

This folder contains the following files:

• ecoli.nt: database of gene sequences of the Escheria Coli

• blastall.exe: Windows version of the blastall program.

• formatdb.exe: Windows version of the formtdb program.

• seq0.txt, …, seq2.txt: sequence input files.

• blast.psm: Parameter Sweeping Model file for the blast task tamplate.

• blast.wbch: Aneka Parameter Sweep file for the blast project.

The last two files are provided for convenience and will be created by following the
steps that are provided with this example.

5.2 Creating the Parameter Sweeping Application for BLAST

 5.2.1 Identifying Parameters

The first step to do while creating a task template is to identify the parameters that
are involved in the application and their nature. In this case since we have decided to
perform multiple searches against the same database we will have the following
parameters:

• SequenceFile: it could be a range or an enum parameter.

• DatabaseFile: it is a fixed parameter the value is ecoli.nt.

• ResultFile: it is a parameter depending on the SequenceFile parameter.

We can collapse the SequenceFile and ResultFile parameters into a single parameter
SeqNum of type Range:Integer [0,2:1] and compose the names of the sequence and the
result files accordingly.

 5.2.2 Selecting Shared Files

In order to perform the BLAST search we need to prepare the database first by
executing the command:

formatdb -i ecoli.nt -p F -o T

This operation will create the following index files that are required by the blastall
program to perform the search:

• ecoli.nt.nhr

• ecoli.nt.nin

• ecoli.nt.nnd

• ecoli.nt.nni

• ecoli.nt.nsd

• ecoli.nt.nsi

These files together with the blastall.exe executable are the shared files of out

application since they are required by each of the jobs that are created from the task
template.

 5.2.3 Identifiying Input and Output Files

The blastall command requires the set of indexes to perform the search, the specific
sequence file to be looked for and it produces the a result files containing the matches
found in the database.

Since all the index files are already provided to each job (as well as the blastall.exe
executble) the only input file to define in the task template is the sequence file. For
what concerns the output files we have only one file that is represented by the result
file produced by the blastall command. Both input and output files are dependent on
the SeqNum parameter that can be used to compose their names as follows:

• Input file: [path to]seq($SeqNum).txt6

• Output file: result($SeqNum).txt

There are no other files to consider.

 5.2.4 Creating the Task Commands

The commands section of the Task Template will only contain one single command that
is an execution command (EXE) that will run the blastall program. In this case we will
have the following settings:

• cmd: blastall.exe

• args: -p blastn -d ($Database) -i seq($SeqNum).txt -o result($SeqNum).txt

This command will execute the BLAST search and produce the result file.

 5.2.5 Using the Wizard and Creating the .psm and .wbch Files

The table below shows a summary of the data that need to be entered in the wizard in
order to create the task template:

Parameters Database (Single: [path to] ecoli.nt)
SeqNum (Range:Integer [0,2:1])

Shared Files [path to] blastall.exe
[path to] ecoli.nt.nhr
[path to] ecoli.nt.nin
[path to] ecoli.nt.nsd
[path to] ecoli.nt.nnd
[path to] ecoli.nt.nni
[path to] ecoli.nt.nsi

Input Files [path to] seq($SeqNum).txt

6 [Path to] identifies the full path to the seqK.txt files where K = 0,1,2.

Output Files result($SeqNum).txt

Commands [EXE]
cmd: blastall.exe
args: -p blastn -d ($Database) -i seq($SeqNum).txt -o result($SeqNum).txt

In order to create the task template it is only necessary to select File → New... and
provide a name, a description, and a workspace directory for the project. Figure 24
shows the first page of the wizard where all this information is entered.

Figure 24. Entering the Details of the BLAST Project.

The next steps of the wizard will add the information in the table. Once the user has
reached the Finalize page he or she can save the template with the blast.psm file
name and press the Save button as shown in Figure 25. At this point the Designer
Explorer saves the Parameter Sweeping Model file, creates an Aneka Parameter Sweep
project, and loads the project window ready to be executed on the Aneka Cloud.

The first thing to do is to save the project. By using the wizard the user has selected
the option to save the Parameter Sweeping Model file and this does not automatically
saves the project file too. In order to save the project it is sufficient to select File →
Save and since the project is not saved a Save File dialog will pop up and the user will
be asked to provide a name for the project. We provide the blast.wbch file name and
save the project file into the Workspace directory of the project.

Figure 25. Saving the BLAST Task Template.

Figure 26 and 27 show the content of the blast.psm file and the blast.wbch file. The
user can check whether, except for some directory information, the structure and the
content of the file generated while trying the example are the same.

Figure 26. BLAST PSM File Content.

Figure 27. BLAST WBCH File Content.

NOTE: In the two listings some long information about the
path to the files and the description of the
parameters have been substituted with three dots in
order to properly display the content of the files.

At this stage all the data of the project is saved and the application is ready to be run.

5.3 Running the BLAST Project

In order to run the project it is necessary to properly set up the connection
information to the Aneka Cloud. This information as already shown can be provided by
selecting the menu voice: Edit → Preferences... This command pops up the form
shown in Figure 15 (see Page 19). This is the form where the user has to enter user
name, password, and the address to a Aneka Cloud access point as described in section
4.3.3.

Once the connection details are entered the user can run the application by clicking on
the play icon of the toolbar and the PSM engine will start submitting jobs to the Aneka
Cloud. The current setup of the task template will only generate three jobs: one for
each sequence file that has to be searched.

Figure 28 shows the BLAST Demo application running. Once the application is finished
the user can found the result files into the PSM – BLAST Demo_<GUID> subdirectory in
the project workspace folder.

Figure 28. BLAST Demo Application Running.

Figure 29 shows the content of one of the result files obtained from the execution of
the BLAST application.

Figure 29. Content of the Result File.

The user can perform multiple runs by clicking again on the play button on the toolbar.
As already introduced, for each of the execution a new subdirectory for the run is
created. In this case there is no point in executing more runs of the application since
the result of the search will be the same.

5.4 Extending the BLAST Example

As discussed in section 5.1.3 it is possible to increase the workload submitted to the
Aneka Cloud it is possible to perform multiple searches on different databases. In this
case the Database parameter can be characterized as enum parameter listing all the
possible databases that will be searched. By changing the Database parameter from
single to enum it is not possible to perform database formatting off line, it is then
necessary to make that task part of each job. This means that the following changes
have to be applied to the task template:

• configure the formatdb.exe executable as a shared file

• remove the ecoli.nt.xxx files as shared files (these will be generated by the task

• configure the Database parameter as an enum parameter

• introduce the ($Database) input file

• introduce first an EXE task executing formatdb -i ($Database) -p F -o T

• leave the existing EXE task as it is.

The implementation of these changes is left to the reader.

6. Conclusions

In this tutorial we introduced the basic concepts concerning Parameter Sweeping
Applications. We described the support provided by Aneka for implementing and
managing this kind of applications and presented with major detail the Design Explorer.

The Design Explorer is integrated environment for prototyping and executing
Parameter Sweeping applications on top of Aneka Clouds. It is a project based
workspace and provides a user interface through which users can define the template
task characterizing Parameter Sweeping Applications by using a simple step by step
procedure. Task templates can be saved as plain XML documents within the project file
or directly executed in the environment which allows to monitor the status of the
application and collects some various statistics for the execution.

This tutorial has covered the following arguments:

• General notions about the Parameter Sweeping applications.

• Support provided by Aneka for running Parameter Sweeping applications
(Parameter Sweeping Model).

• Overview of the Design Explorer features.

• How to create a simple Parameter Sweeping application with input and output
files.

• How to manually create the XML file that represent the template task for the
Parameter Sweeping Application without the support of the Design Explorer.

• How to compose the template task by using the command provided through the
Design Explorer.

• How to monitor and control the execution of a Parameter Sweeping application.

All these features have been demonstrated by developing the BLAST Demo application
from scratch.

This tutorial does not fully cover what can be done with the Parameter Sweeping Model
that represents the set of APIs that Aneka exposes to developers for building Parameter
Sweeping applications. In particular this tutorial did not explain how to compose by
using the API a task template and generate and run tasks from it. For a more detailed
information about this and other aspects the user can have a look at the corresponding
APIs documentation (namespaces Aneka.PSM.Core, Aneka.Tasks.BaseTasks).

	1. Prerequisites
	2. Introduction
	3. Parameter Sweeping Applications
	3.1 Definition and Characteristics
	3.2 Example
	3.3 Parameter Sweeping Support within Aneka

	4. Design Explorer
	4.1 Creating a Parameter Sweeping Application
	 4.1.1 Application Information
	 4.1.2 Parameter Definition
	 4.1.3 Configuring Shared Files
	 4.1.4 Input and Output Files
	 4.1.5 Task Template Commands
	 4.1.6 Finalizing the Task Template

	4.2 PSM File Structure
	4.3 Managing and Executing Parameter Sweeping Applications
	 4.3.1 Project Window Layout
	 4.3.2 Editing the Task Template
	 4.3.3 Connecting to Aneka
	 4.3.4 Running the Project
	 4.3.5 Jobs Visualization
	 4.3.6 Statistical Data
	 4.3.7 Analyzing the Console

	5. Example
	5.1 BLAST
	 5.1.1 BLAST Distribution
	 5.1.2 Executing a BLAST Query
	 5.1.3 Parallelizing a BLAST Task

	5.2 Creating the Parameter Sweeping Application for BLAST
	 5.2.1 Identifying Parameters
	 5.2.2 Selecting Shared Files
	 5.2.3 Identifiying Input and Output Files
	 5.2.4 Creating the Task Commands
	 5.2.5 Using the Wizard and Creating the .psm and .wbch Files

	5.3 Running the BLAST Project
	5.4 Extending the BLAST Example

	6. Conclusions

