
Aneka Tutorial Series

Developing Thread Model Applications

Christian Vecchiola and Xingchen Chu

Abstract
This tutorial describes the Aneka Thread Programming Model
and explains how to create distributed applications based on it.
It illustrates some examples provided with the Aneka
distribution that are built on top the Thread Model. It provides
a detailed step by step guide for users on how to create an
application by using the Microsoft Visual Studio 2005
Development Environment. After having read this tutorial, the
users will be able to develop their own application on top of the
Aneka Thread Model.

Document Status
Creation Date: 12/01/08

Version: 0.1

Classification: User

Authors: Christian Vecchiola, Xingchen Chu

Last Revision Date: 09/17/09

Status: Draft

1. Prerequisites
In order to fully understand this tutorial the user should be familiar with the
general concepts of Grid and Cloud Computing, Object Oriented programming
and generics, distributed systems, and a good understanding of the .NET
framework 2.0 and C#.

The practical part of the tutorial requires a working installation of Aneka. It is
also suggested to have Microsoft Visual Studio 2005 (any edition) with C#
package installed1 even if not strictly required.

1 Any default installation of Visual Studio 2005 and Visual Studio 2005 Express comes with all the
components required to complete this tutorial installed except of Aneka, which has to be
downloaded and installed separately.

2. Introduction
Aneka allows different kind of applications to be executed on the same
Grid/Cloud infrastructure. In order to support such flexibility it provides
different abstractions through which it is possible to implement distributed
applications. These abstractions map to different execution models. Currently
Aneka supports three different execution models:

• Task Execution Model

• Thread Execution Model

• MapReduce Execution Model

Each execution model is composed by three different elements: the WorkUnit,
the Scheduler, the Executor, and the Manager. The WorkUnit defines the
granularity of the model; in other words, it defines the smallest computational
unit that is directly handled by the Aneka infrastructure. Within Aneka, a
collection of related work units define an application. The Scheduler is
responsible for organizing the execution of work units composing the
applications, dispatching them to different nodes, getting back the results,
and providing them to the end user. The Executor is responsible for actually
executing one or more work units, while the Manager is the client component
which interacts with the Aneka system to start an application and collect the
results. A view of the system is given in the figure below.

Figure 1. System Components View.

Hence, for the Thread Model there will be a specific WorkUnit called
AnekaThread, a Thread Scheduler, a Thread Executor, and a Thread Manager.
In order to develop an application for Aneka the user does not have to know
all these components; Aneka handles a lot of the work by itself without the
user's contribution. Only few things the users are required to know:

• how to define AnekaThread instances specific to the application that is
being defined;

• how to create a AnekaApplication and starts the execution of threads;

• how to control the AnekaApplication and collect the results.

In the remainder of this tutorial will then concentrate on the Thread Model
even if many of the concepts described can be applied to other execution
models.

3. Thread Model

3.1 Local vs Remote Threads

The modern operating systems provide the abstractions of Process and
Thread for defining the runtime profile of a software application. A Process is a
software infrastructure that is used by the operating system to control the
execution of an application. A Process generally contains one or more threads.
A Thread is a sequence of instructions that can be executed in parallel with
other instructions. When an application is running the operating system takes
care of alternating their execution on the local machine. It is responsibility of
the developer to create a consistent computation as a result of thread
execution.

The Thread Model uses the same abstraction of for defining a sequence of
instructions that can be remotely executed in parallel with other instructions.
Hence, within the Thread Model an application is a collection of remotely
executable threads. The Thread Model allows developers to virtualize the
execution of a local multi-threaded application (developed with the .NET
threading APIs) in an almost complete transparent manner. This model
represents the right solution when developers want to port the execution of
a .NET multi-threaded application on Aneka and still use the same way of
controlling the execution of application flow, which is based on
synchronization between threads.

Developers that are familiar with multi-threaded applications will find the
Thread Model the most natural path to program distributed applications with
Aneka. The transition between a .NET thread and an Aneka thread is almost
transparent. In the following a sample application will be used to discuss how
to use Aneka threads.

3.2 Working with Threads

Within the .NET threading model a thread is a represented by the Thread
sealed class that can be configured with the method to execute through the
ThreadStart class. The users activates a thread by calling the Start method on
it and by using the APIs exposed by the Thread class it can:

• Check the status of the thread by using the Thread.State and the
Thread.IsAlive properties.

• Control its execution by stopping it (Thread.Abort).

• Suspending and resuming their execution (Thread.Suspend and
Thread.Resume).

• Wait for its termination by calling Thread.Join.

The Thread.Join, Thread.Suspend, and Thread.Resume are the operations that
allow developer to create basic synchronization patterns between threads.
The Thread class provides additional APIs that cover:

• Thread affinity.

• Volatile read and write.

• Critical region management.

• Asynchronous operations.

• Stack management.

More complex and advanced synchronization pattern can be obtained by
using other classes of the .NET threading APIs that does not have any
reference to the Thread class.

In order to remotely execute a thread, the Thread Model provides a
counterpart of the the Thread class: AnekaThread. The AnekaThread class
represents the work unit in the Thread Model and exposes a subset of the
APIs of System.Threading.Thread. It is possible to perform almost all the basic
operations described before and the following table identifies the mappings
between the two worlds.

Table 1. Local vs Remote Thread

.NET Threading API Aneka Threading API

System.Threading Aneka.Threading

Thread AnekaThread

Thread.ManagedThreadId (int) AnekaThread.Id (string, from WorkUnit)

Thread.Name AnekaThread.Name (from WorkUnit)

Thread.ThreadState (ThreadState) AnekaThread.State (WorkUnitState)

Thread.IsAlive AnekaThread.IsAlive

Thread.IsRunning AnekaThread.IsRunning (from

WorkUnit)

Thread.IsBackground [Not provided]

Thread.Priority [Not provided]

Thread.IsThreadPoolThread [Not provided]

Thread.Start AnekaThread.Start

Thread.Abort AnekaThread.Abort

Thread.Sleep [Not provided]

Thread.Interrupt [Not provided]

Thread.Suspend [Not provided]

Thread.Resume [Not provided]

.... [Not provided]

The AnekaThread class implements the basic Thread operations but does not
give any support for the advanced operations such as: critical region, stack,
apartment, culture, and execution context management. Moreover, some
basic operations have not been supported, these are:

• Thread Priority Management.

• Suspend, Resume, Sleep, and Interrupt.

The reason why these operations have not been supported is because the
AnekaThread instances are remotely executed on a computation node that
generally executes work units coming from different distributed applications.
It is not possible to keep the resources of a computation node occupied with a
AnekaThread instance that is sleeping, or suspended. For what concerns the
priority Aneka does not provide any facility.

namespace Aneka.Threading

{

 /// <summary>

 /// Class AnekaThread. Represents the basic unit of work

 /// in the Thread Model. A AnekaThread instance is configured with a

 /// specific method to execute and its remote execution is

 /// started.

 /// </summary>

 public class AnekaThread : WorkUnit

 {

 /// <summary>

 /// Gets a boolean value indicating whether the AnekaThread instance

 /// instance is alive (not: Unstarted | Completed | Aborted |

 /// Failed)

 /// </summary>

 public bool IsAlive { get; }

 /// <summary>

 /// Gets the reflection and instance information on the method that is

 /// executed on the remote computation node.

 /// </summary>

 public RemoteMethodInfo TargetMethodInfo { get; }

 /// <summary>

 /// Gets the instance representing the target of the method invocation.

 /// </summary>

 public object Target { get; }

 /// <summary>

 /// Creates an instance of the AnekaThread.

 /// </summary>

 /// <param name="start">thread start method information.</param>

 /// <param name="application">grid application.</param>

 public AnekaThread(ThreadStart start,

 AnekaApplication<AnekaThread, ThreadManager> application)

 { ... }

 /// <summary>

 /// Starts the execution of the AnekaThread.

 /// </summary>

 public void Start() { ... }

 /// <summary>

 /// Aborts the execution of the AnekaThread.

 /// </summary>

 public void Abort() { ... }

 /// <summary>

 /// Waits until the execution of AnekaThread is terminated.

 /// </summary>

 public void Join() { ... }

 /// <summary>

 /// Waits until the execution of AnekaThread is terminated.

 /// </summary>

 /// <param name="time">Maximum interval of time to wait.</param>

 public void Join(TimeSpan time) { ... }

 }

}

Listing 1 - AnekaThread class.

Listing 1 presents the public interface of the AnekaThread class. Other than
the declaration of the basic operations for controlling the execution of a
AnekaThread, the class exposes two interesting properties that provide
information about the method executed remotely (TargetMethodInfo) and
target of the invocation (Target).

In order to create a AnekaThread instance it is necessary to pass to the
constructor two parameters: a ThreadStart object and a reference to the
AnekaApplication instance that the threads belongs to. Once the thread has
been created is State property is set to WorkUnitState.Unstarted and it is

possible to access the information about the method that will be executed by
the TargetMethodInfo property. This property extrapolates all the reflection
information used to recreate the execution environment on the remote
computation node. This property is of type RemoteMethodInfo whose
interface is described in Listing 2.

namespace Aneka.Threading

{

 /// <summary>

 /// Class RemoteMethodInfo. Wraps all the required information for executing

 /// a method in a remote computation node.

 /// </summary>

 public sealed class RemoteMethodInfo

 {

 /// <summary>

 /// Gets the display name of the assembly containing the definition of

 /// the method to execute.

 /// </summary>

 public string AssemblyName { get; }

 /// <summary>

 /// Serialized information of the target of the method invocation.

 /// </summary>

 public byte[] ObjectInstance { get; }

 /// <summary>

 /// Flags used to invoke the method.

 /// </summary>

 public BindingFlags Flags { get; }

 /// <summary>

 /// Name of the method to invoke.

 /// </summary>

 public string TargetMethod { get; }

 }

}

Listing 2 - Class RemoteMethodInfo.

While the use of TargetMethodInfo is mostly internal, the Target property is of
more interest for the user. This property exposes the updated value of the
instance after the execution of the AnekaThread and provides a quick way for
performing the mapping between the threads and the instances that are
object of thread execution. When programming with the .NET threading API
developers have to maintain this mapping in a specific data structure (list,
hash-table, etc...) and it is their responsibility to keep it updated when the
state of the thread changes. By using the Aneka threading APIs no additional
code is required.

Static Methods

The .NET Framework allows the execution of static methods
as entry points for Thread execution. While this feature
makes perfectly sense in a local execution context, it
becomes unclear in a distributed environment.

Threads running in the same application domain share a
static context. As a result, the side effects of an execution
can be captured into static variables and still be accessible
to the user. Threads running in different application
domains – and this is the case of AnekaThread instances –
do not share a static context. This makes the use of static
methods quite limited.

For this reason the current implementation of the Thread
Model does no support the remote execution of static
methods.

The second parameter required by the AnekaThread constructor is the
reference to the AnekaApplication class that groups all the instances
belonging to the same application. A property common to all the
programming models supported by Aneka is the concept of application. This
can be generally described as a collection of related jobs that constitute a
distiributed computation. All the programming models must provide a local
view of the distributed application through a specific instance of the
AnekaApplication class. AnekaApplication<W,M> is a generic class and need
to be specialized with the concrete types that are related to the programming
model implemented. In the case of the Thread Model we have that:

• W, which must inherit from WorkUnit, is AnekaThread.

• M, which must implement IApplicationManager, is ThreadManager.

These two generic parameters represent respectively the basic unit of
computation of the model and the specific client manager used to handle the
interaction with Aneka for the given programming model.

The specific tasks of the AnekaApplication are the interaction with Aneka and
providing aggregate information on the execution of all the work units that it
ows. Whereas in other programming models (see the Task Model) the
AnekaApplication class plays a more concrete role, in the case of the Thread
Model its role is mostly confined to the setup of the distributed application.
The .NET Threading APIs do not have a corresponding application object and
the execution flow of the application is mainly controlled by directly operating
on the thread instances by calling the methods exposed by the
System.threading.Thread class. In the case of Aneka the same approach has
been maintained and developers can directly operate on AnekaThread
instances once they have been created and assigned to a AnekaApplication

instance.

Figure 2. AnekaThread instance state transitions (client view).

The AnekaThread class provides all the required facilities to control its life
cycle. Figure 2 depicts the life cycle of a AnekaThread instance. As soon as
the instance is created it is in the Unstarted state. A call to
AnekaThread.Start() makes it move into the Started state and causes the

submission of the instance to Aneka. If the AnekaThread has some dependent
files to be transferred it moves to StagingIn state until all the dependent files
are transferred. The AnekaThread can then move directly to the Running state
is any computing node is available or being queued, thus moving into the
Queued state. As soon as execution completes if there are any dependent
output files to be downloaded to the client the states is changed to
StatingOut otherwise it is directly set to Completed. At any stage an exception
or an error can occur that causes the AnekaThread instance to move into the
Failed state. The user can also actively terminate the execution by calling
AnekaThread.Abort() and this causes the AnekaThread instance to be stopped
and its state to be set to Aborted.

NOTE: The diagram also shows the Rejected state. This state is related
to the negotation protocol and it is actually not active.
AnekaThread instances can be allocated to specific slots for their
execution that can be reserved exclusively. When starting an
AnekaThread instance it is possible to associate to it a reservatio
identifier that will map the instance to the reserved slots. If this
reservation identifier is not valid or expired the state of the
instance becomes Rejected and it is not allowed to run. The
diagram does not show to the ReScheduled state. This state is
assumed when an AnekaThread instance is interrupted during
execution and put in the scheduling queue gain, This could
happen if the execution slot in which the instance was running
has been preempted by a reserved WorkUnit instance.

3.3 Additional Considerations

 3.3.1 Serialization

Since AnekaThread instances are moved between different application
domains they need to be serialized. The AnekaThread instance is declared
serializable, but this does not guarantee that all AnekaThread instances
created by the users will be serializable. In particular, since the AnekaThread
is configured with a ThreadStart object referencing the instance that is the
target of the method invocation, the type containing the method definition of
the method need to be serializable too. The reason for this, is because the
infrastrcture will serialize the local instance on which the method will be
invoked and send it to the remote node.

In case the users provides a method that is not defined in a serializable type,
the AnekaThread constructor throws an ArgumentException alerting the user
that the selected method cannot be used to run a AnekaThread instance. This
prevents the user from creating a work unit that will not run.

 3.3.2 Thread Programming Model vs Common APIs

As pointed out in section 3.1 the Thread Model allow developers to completely
controll the execution of the application by using the operations exposed by

the AnekaThread class. Once the AnekaApplication instance has been
properly set up there is no need to maintain a reference to it. The rationale
behind this choice is that developers familiar with the .NET Threading APIs do
not have the explicit concept of application but simply coordinate the
execution of threads.

Since the Thread Model relies on the common APIs of the infrastructure, it
takes advantage of the services these APIs offer and these services can be
used by developers too. In this case the AnekaApplication class plays an
important role in controlling the execution flow, since it allows to:

• Monitor the state of AnekaThread instances by using events:

• AnekaApplication<W,M>.WorkUnitFailed

• AnekaApplication<W,M>.WorkUnitFinished

• GridApplicaiton<W,M>.WorkUnitAborted

• Programmatically control the execution of GirdThread instances:

• AnekaApplication<W,M>.ExecuteWorkUnit(W)

• AnekaApplication<W,M>.StopWorkUnit(W)

• Terminate the execution of the application:

• AnekaApplication<W,M>.ApplicationFinished

• AnekaApplication<W,M>.StopExecution

These APIs are available to all the models and allows developers to perform
the basic operations required to manage the distributed application in a
model independent fashion. For what concerns the Thread Model this seems
to be unnatural even though can be useful some times. This tutorial will not
explore further this option and the reader is suggested to look for the Task
Model that naturally uses this APIs.

It is important to notice that the result of using the AnekaThread operations or
the AnekaApplication operations is the same. The reason for this is that both
of the two classes relies on the ThreadManager class for performing the
requested operations.

4. Example: Distributed Warhol Filter.
In this section we will show how to use the Thread Model and the
AnekaThread APIs to create a distributed image filter that performs the
Warhol Effect. By developing this simple application the user will be able to:

• Create a AnekaApplication instance configured for the Thread Model.

• Customize the execution of the a AnekaApplication with a configuration
file.

• Create and customize AnekaThread instances with user specific code.

• Submit and control the execution of AnekaThread instances.

This tutorial is not an exhaustive guide to the APIs provided with the Thread
Model but it is a good start for developing applications based on distributed
threads with Aneka.

4.1 What is the Warhol Effect?

There is no clear definition of what the Warhol Effect is but the effect
transforms a given picture into another that resembles in style the following
painting of Marylin Monroe made by the famous pop artist Andy Warhol (see
Figure 3).

Figure 3. Marylin Monroe prints (Andy Warhol).

Given the fact that the prints are made by a human without any specific
algorithm it is quite difficult to automate the process and there are many
attempts on the web that are trying to reproduce the same effect by means of
a computer algorithm. Any filter available in the web produces a result whose
similarity in style with Andy Warhol's paintings varies.

In order to produce a simple computer algorithm that perform the filter we
will apply the following restrictions:

• The output image produced by the filter is has a color depth of four
colors (many of the Warhol's paintings are basically made by using four
colors).

• The colors of the original image are remapped and clustered into the
new palette made of three colors according to their brightness.

• The output image will provide an image that is two times the size of the
original one and is composed by organizing into a square four different
samples of the same image filtered with different palettes.

The outcome of this simple example will be a console application that given
an input image will produce a second image as described above. This
application will use the Thread Model and Aneka for distributing the execution

of the steps required to perform the filter.

NOTE: in the state transition diagram it also appear a Rejected state.
This state is related to the reservation infrastructure that is not
active at the moment. In simple terms, WorkUnit instances can
be executed with a reservation; this means that a specific slot
in the system has been reserved for their execution that is
identified by an id. The Rejected state come into play when a
WorkUnit instance provides to the system a reservation
identifier that is not valid or expired. The diagram does not
show the ReScheduled state that appears when a WorkUnit,
while running, is terminated by the infrastructure and put into
the scheduling queue for being executed again. This could
happen because the execution slot assigned to the instance is
expired and cannot be extended.

4.2 Application Structure

The source code of this application can be found into the Aneka installation
directory under the Examples/Tutorials/ThreadDemo directory. There is a
convenient Visual Studio 2005 Project that simplifies the build process, but
that is not essential for completing the tutorial.

In order to implement the application we will organize the whole application
into the three main classes:

• Aneka.Examples.ThreadDemo.WarholFilter (see WarholFilter.cs): this
class performs the filter of the image and given a picture produces
another picture that is the same size of the original and remaps its
colors.

• Aneka.Examples.ThreadDemo.WarholApplication (see
WarholApplication.cs): this class is responfsible for:

• setting up the AnekaApplication instance;

• configuring it with for the Thread Model;

• creating the AnekaThread instances and starting their execution;

• waiting for the completion of the AnekaThread instances and
assembling the four images produced into a single image.

• Aneka.Examples.ThreadDemo.WarholDriver (see Program.cs): this class
constitutes the main entry point of the application and is in charge of
parsing the command line parameters, creating and configuring the
WarholApplication class, and starting its execution. In case the
command line parameters are not correct the class displays a simple
help that explains to ther user how to launch the application.

A summary view of the operations exposed by the three classes can be seen
in Figure 4 (next page).

Figure 4. Class diagram.

These three classes are compiled into an executable (wahrolizer.exe)
representing the console application that perform the filter. The application
can be started by the command line as follows:

warholizer input_file [output_file] [conf_file]

where:

input_file: path to the image taken as a input for the filter [mandatory]

output_file: path to the file where the filtered image will be saved to
[optional]

conf_file: path to the configuration file for connecting to Aneka
[optional]

The only mandatory parameter is input_file. If the user does not provide any
save path for the output image the application will automatically create a file
named [input-file-name].wahrol.[input-file-ext] where [input-file-name] and
[input-file-ext] are respectively the name and the extension of the input file.
For example:

marilyn.jpg => marilyn.wharol.jpg

If the output file already exists the application will overwrite the file without
asking the user permission. For what concerns the settings used to connect to
Aneka the user can specify them into an xml file. A sample xml configuration
file is already provided (see conf.xml) and it contains the default values that

are used when the user does not specify a configuration file. This file whose
content is displayed in Figure 4 can be used a starting point for exploring the
configuration settings of Aneka and creates customs configurations.

In the next sections we will describe the implementation of the filter, the main
steps carried out by the WarholApplication to perform the distributed filtering.

Figure 5. Aneka Configuration File (conf.xml).

4.3 WarholFilter: Filter Implementation

The WarholFilter class implements the basic operation of remapping the colors
of an image into a three color palette that can be specified by the user.

// File: WarholFilter.cs

using System;

using System.Collections.Generic;

using System.Text;

using System.Drawing;

namespace Aneka.Examples.ThreadDemo

{

 /// <summary>

 /// Class WarholFilter. Performs the color remapping and clustering of an input

 /// image according to a specified palette. This class exposes an Image property

 /// that is set by the user to the input image to filter and that points to the

 /// processed image after the Apply method has been called.

 /// </summary>

 [Serializable]

 public class WarholFilter

 {

 /// <summary>

 /// Sample palette made by Yellow, DarkGreen, and Navy Color constants.

 /// </summary>

 private static readonly Color[] YellowGreenNavy = new Color[3] { ... };

 /// <summary>

 /// Sample palette made by Fuchsia, Orange, and DarkBlue Color constants.

 /// </summary>

 private static readonly Color[] FuchsiaOrangeBlue = new Color[3] { ... };

 /// <summary>

 /// Sample palette made by Green, Orange, and Gainsboro Color constants.

 /// </summary>

 private static readonly Color[] GreenOrangeGainsboro = new Color[3] { ... };

 /// <summary>

 /// Sample palette made by Fuchsia, DarkOliveGreen, and WhiteSmoke Color

 /// constants.

 /// </summary>

 private static readonly Color[] FuchsiaGreenWhite = new Color[3] { ... };

 /// <summary>

 /// Input/Output bitmap.

 /// </summary>

 protected Bitmap image;

 /// <summary>

 /// Gets, sets the input image on which the filter is applied. This

 /// property stores the filtered bitmap after the Apply() method is

 /// called.

 /// </summary>

 public Bitmap Image

 { get { return this.image; } set { this.image = value; } }

 /// <summary>

 /// Target color palette.

 /// </summary>

 protected Color[] palette;

 /// <summary>

 /// Gets, sets the palette of colors that will be used to remap the imahge.

 /// </summary>

 public Color[] Palette

 { get { return this.palette; } set { this.palette = value; } }

 /// <summary>

 /// Applies the filter.

 /// </summary>

 public void Apply()

 {

 if (this.image == null)

 {

 throw new ArgumentNullException("Image is null!", "image");

 }

 if (this.palette == null)

 {

 throw new ArgumentNullException("Palette is null!", "palette");

 }

 this.image = this.Filter(this.image, this.palette);

 }

 /// <summary>

 /// Remaps the color values of the source image to the color values contained

 /// in the given palette by clustering them according to their brightness.

 /// </summary>

 /// <param name="image">source image</param>

 /// <param name="palette">target palette</param>

 /// <returns>filtered bitmap</returns>

 protected Bitmap Filter(Bitmap source, Color[] palette)

 {

 // Step 1. reorder the palette according to the color brightness

 // Step 2. identify the minimum (min) and the maximum (max) brightness

 // values for the source image and creates (max – min) / length

 // clusters where the length is the size of the palette.

 // Step 3. invoke Rescale and compute the minimum brightness thresold

 // color values for each cluster.

 // Step 4. for each pixel of the image evaluates the birghtness and find

 // find the cluster into which the color will be mapped. Set the

 // color corresponding to that cluster in the output image.

 }

 /// <summary>

 /// Creates an array of threesold values by recursively dividing the range

 /// identified by max – min and putting the values computed into the given

 /// array.

 /// </summary>

 /// <param name="delta">lenght of the subarray in values that will be filled

 /// during the call of the method. </param>

 /// <param name="start">index of the first element of the subarray</param>

 /// <param name="midPoint">thresold value for the middle element</param>

 /// <param name="min">minimum thresold value</param>

 /// <param name="max">maximum thresold value</param>

 /// <param name="values">target array</param>

 protected void Rescale(int delta, int start,

 float midPoint, float min, float max, float[] values)

 { ... }

 }

}

Listing 3 - Class WarholFilter.

Listing 3 provides a summary view of the class. As it can be noticed by the
included namespaces there is nothing in this class that relates to any Aneka
library. WarholFilter simply defines the operation that is carried out by the
AnekaThread instance when it is excuted on the remote computation node.
The relevant members of this class are the following:

• WarholFilter.Image: this property is used to stored either the input or the
output bitmap of the filter. More precisely when an instance of
WarholFilter is created this property is set to the image that will be
filtered. After the apply method is called, this property references the
filtered image.

• WarholFilter.Palette: this property references the palette that will be
used to remap the color values of the image. The WarholFilter class

exposes four ready t use palettes that contain combination of colors
that are used in Andy Warhol's paintings:

• WarholFilter.YellowGreenNavy

• WarholFilter.FuchsiaOrangeBlue

• WahrolFilter.FuchsiaGreenWhite

• WarholFilter.GreenOrangeGainsboro

These palettes will be used by WarholApplication to create the four
images.

• WarholFilter.Apply(): this method performs some argument checking on
the values of the two properties and invokes WarholFilter.Filter to
generate the processed image whose color values are rescaled to the
values in Palette.

It is not the purpose of this tutorial to dig into the details of the
implementation of the filter (a complete explanation of the filter is given into
the comments in the code) but it is worth estimating its complexity.

 4.3.1 Complexity Analisys

The computational complexity of the filter is located into the
WarholFilter.Filter method and it depends on two parameters: the size of the
palette and the image dimension (O(Lpal,Npx) where Lpal is the size of the
palette and Npx the number of pixel of the image). The steps involved into the
filter as pointed out into the listing are the following:

• Step 1: sorting is made by using bubble sort (O(Lpal
2))

• Step 2: the entire image is scanned once (O(Npx))

• Step 3: the thresold computation is O(Lpal)

• Step 4: the entire image is scanned once and for each pixel the palette
array is scanned (O < O(Lpal x Npx))

The complexity of the filter has then an upper bound of K1(O(Lpal
2) + O(Lpal) +

O(Npx)). Since Lpal << Npx it is possible to identify an upper bound with K2O(Npx

). This upper bound is a rough estimation of the time required to perform one
single filter. The application requires four different samples of the filter. Hence
we can easily parallelize this step and reduce the overall computation time.

4.4 WarholApplication: Distributed Filtering Coordination

The WarholFilter application is responsible of coordinating the distributed
execution of the filters and composing their results together. It uses the
services of the Thread Model for parallelizing the computation and the
services of WarholFilter class for performing the single filtered components of
the image. In this section we will describe in detail its behavior.

// File: WarholApplication.cs

#region Namespaces

using System;

using System.Collections.Generic; // Ilist<...> class.

using System.Text; // StringBuilder class.

using System.IO; // IOException (IO Errors management)

using System.Drawing; // Image and Bitmap classes.

using Aneka.Entity; // Aneka Common APIs for all models

using Aneka.Threading; // Aneka Thread Model

using System.Threading; // ThreadStart (AnekaThread initialization)

#endregion

namespace Aneka.Examples.ThreadDemo

{

 /// <summary>

 /// Class WarholApplication. This class uses the Thread Model for performing

 /// the distributed filter on a given image and creating the Warhol Effect. It

 /// is responsible of managing the interaction with Aneka and controlling the

 /// execution of the distributed application by managinig the AnekaThread

 /// instances required to perform the filter.

 /// </summary>

 public class WarholApplication

 {

 #region Properties

 /// <summary>Path to the input file.</summary>

 protected string inputPath;

 /// <summary>Gets or sets the path to the input file.</summary>

 public string InputPath

 {

 get { return this.inputPath; }

 set

 {

 if ((value == null) || (value == string.Empty))

 {

 throw new ArgumentException("InputPath is null or empty",

 "InputPath");

 }

 this.inputPath = value;

 }

 }

 /// <summary>Path to the output file.</summary>

 protected string outputPath;

 /// <summary>Gets or sets the path to the output file.</summary>

 public string OutputPath

 {

 get { return this.outputPath; }

 set { this.outputPath = value; }

 }

 /// <summary>Path to the configuration file.</summary>

 protected string configPath;

 /// <summary>Gets or sets the path to the configuration file.</summary>

 public string ConfigPath

 {

 get { return this.configPath; }

 set { this.configPath = value; }

 }

 #endregion

 #region Implementation Fields

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// List containing the currently running AnekaThread instances.

 /// </summary>

 protected IList<AnekaThread> running;

 /// <summary>

 /// List containing the WarholFilter instances that have completed the

 /// execution.

 /// </summary>

 protected IList<WarholFilter> done;

 /// <summary>

 /// Number of columns that will compose the final image.

 /// </summary>

 protected int repeatX;

 /// <summary>

 /// Number of rows that will compose the final image.

 /// </summary>

 protected int repeatY;

 #endregion

 #region Public Methods

 /// <summary>Creates an instance of WarholApplication.</summary>

 public WarholApplication() {}

 /// <summary>Applies the filter.</summary>

 public void Run() { ... }

 #endregion

 #region Helper Methods

 /// <summary>

 /// Reads the configuration and initializes the AnekaApplication instance.

 /// </summary>

 protected void Init() { ... }

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void StartExecution(Bitmap source) { ... }

 /// <summary>

 /// Waits for the completion of all the threads and if some thread has

 /// failed its execution restarts it.

 /// </summary>

 protected void WaitForCompletion() { ... }

 /// <summary>

 /// Collects the processed images from each filter and composes them

 /// into a single image.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void ComposeResult(Bitmap source) { ... }

 /// <summary>

 /// Creates an array of WarholFilter instances each of them configured

 /// with the same input image and a different palette.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 /// <returns>Array of filters.</returns>

 protected WarholFilter[] CreateFilters(Bitmap source) { ... }

 /// <summary>

 /// Creates a file name by adding the given suffix to the given file name.

 /// </summary>

 /// <param name="name">Source file name.</param>

 /// <param name="suffix">String suffix to append to the name.</param>

 /// <returns>A string containing the new file name.</returns>

 protected string GetNewName(string name, string suffix) { ... }

 #endregion

 }

}

Listing 4 - Class WarholApplication.

Listing 4 shows the content of the WarholApplication.cs file. This file contains
the definition of the WarholApplication class. We can inspect the code by first
dividing the content of the file in five sections delimited by the #region ...
#endregion preprocessor directives:

• Namespaces: this region includes all the required namespaces for
developing the application. Among the namespaces included three are
of a particular interest:

• Aneka.Entity (Aneka.dll): This namespace contains the definition of
the base APIs common to all the models supported by Aneka. Inside
this namespace we can find the AnekaApplication class, the
Configuration class, the WorkUnit class, and all those types that are

part of the core object model. This namespace needs always to be
include while developing applications for Aneka.

• Aneka.Threading (Aneka.Threading.dll): This namespace contains the
definition of the APIs for the Thread Model. In particular it contains
the definition of the AnekaThread and the ThreadManager class. This
namespace needs to be included when developing applications
based on the Thread Model.

NOTE: The whole set of APIs of a model is generally organized into
three namespaces: Aneka.[model], Aneka.[model].Scheduling,
and Aneka.[model].Execution. These namespaces correspond to
three different assemblies named with the same convention.
When developing applications with a specific model it is
generally required to include only the first namespace, since the
other two namespaces contain the definition of server side
components.

• System.Threading (System.dll): This namespace contains .NET
Threading APIs. When developing applications with the Thread Model
it is necessary to initialize AnekaThread instances with a ThreadStart
object whose definition is contained in the System.Threading
namespace.

The other namespaces that have been included into the file contains
the definition of support classes that have been used to program the
WarholApplication class. For example, since the class deals with images
it is necessary to include the System.Drawing (System.Drawing.dll)
namespace.

• Properties: this region contains the three properties that constitute all
the parameters required to perform the filter. The path to the input
image (WarholApplication.InputPath), the path where to save the output
image (WarholApplication.OutputPath), and to the path configuration file
(WarholApplication.ConfigPath). The only mandatory parameter is the
path to the input image that must point to an existing file. The other
two parameters are configured with the default values if set to null.

• Implementation Fields: this region contains the declaration of the
protected members that are used to manage the application. There are
five fields declared:

• AnekaApplication<AnekaThread, ThreadManager> application;

• IList<AnekaThread> running;

• IList<WarholFilter> done;

• int repeatX;

• int repeatY;

The first three fields constitute infrastructure that is generally required
while developing applications based on the Thread Model. As for any

other model it is necessary to created a AnekaApplication instance that
represents the local view of the distributed application. Since
AnekaApplication is a generic type it needs to be specialized by using
the components that identify the model we use. In this case we will use
a AnekaApplication<AnekaThread, ThreadManager> instance, that
specializes the behaviour of AnekaApplication for the Thread Model.
Moreover, two additional data structures are required: a list containing
the running AnekaThread instances and done list containing the filter
instances that have completed their execution. It can be noticed that
running is a list of AnekaThread instances while done is a list of
WarholFilter instances. The reason for this is because while the thread is
running we need to keep a reference to it in order to join the thread and
checks its state. Once a thread has completed its execution there is no
more need to store a reference to it but we simply keep the WarholFilter
instance connected to the thread that is accessible by the
AnekaThread.Target property.

Two more fields have been defined: repeatX and repeatY. These fields
are specific to the application we are developing and maintain the
information about the number of columns and rows that compose the
final image.

• Public Methods: the public methods of the class are its default
constructor and the Run method that starts the execution of the filter.
The content of this method will be analyzed in detail in the next section.

• Helper Methods: in order to make the more understandable the code,
the body of the Run method has been divided into logical steps that
have been encapsulated into helper methods. In particular we can
identify four major steps:

• WarholApplication.Init: initializes the AnekaApplication instance with
the selected Configuration instance.

• WarholApplication.StartExecution: initializes the running and done
lists, creates the AnekaThread instances, and starts their execution.

• WarholApplication.WaitForCompletion: waits for the completion of all
the AnekaThread instances in the running list and eventually restarts
their execution if they failed. When this method returns, the running
list is empty and the done list contains the reference to the
WarholFilter instances created.

• WarholApplication.ComposeResult: iterates on the done list and
compose the final output image by arranging the filtered bitmaps
into an image with repeatX columns and repeatX rows. This method
saves the output bitmap into the WarholApplication.OutputPath if
set, otherwise it generates a new name as described in Section 4.2.

This region contains two more methods that are invoked by the previous
one that are in charge of creating the list of different filters that will be
applied to the image (WarholApplication.CreateFilters) and of

generating a new name for the output file
(WarholApplication.GetNewName).

In the following we will explore in more details the single steps of the
application.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// Applies the filter.

 /// </summary>

 public void Run()

 {

 if (File.Exists(this.inputPath) == false)

 {

 throw new FileNotFoundException("InputPath does not exist.",

 "InputPath");

 }

 try

 {

 // Initializes the AnekaApplication instance.

 this.Init();

 // read the bitmap

 Bitmap source = new Bitmap(this.inputPath);

 // create one filter for each of the four slices that will

 // compose the final image and starts their execution on

 // Aneka by wrapping them into AnekaThread instances...

 this.StartExecution(source);

 // wait for all threads to complete...

 this.WaitForCompletion();

 // collect the processed images and compose them

 // into one single image.

 this.ComposeResult(source);

 }

 finally

 {

 // we ensure that the application closes properly

 // before leaving the method...

 if (this.application != null)

 {

 if (this.application.Finished == false)

 {

 this.application.StopExecution();

 }

 }

 }

 }

 }

}

Listing 5 - Run() method.

Listing 5 reports the content of the Run method. As we can notice body of the
method sequentially calls the logical steps identified before and ensures that
the application instance is closed if some error occurs. In the finally block we
simply check that application instance is not null and whether it has
completed its execution by looking at the AnekaApplication<W,M>.Finished
property. If the application is not finished, the
AnekaApplication<W,M>.StopExecution() method is invoked to terminate its
execution.

NOTE: The lines of code contained in the finally block identify a
common programming pattern for all the model supported by
Aneka. This pattern ensures the resources allocated by the
AnekaApplication instance are properly released and no work
unit is left running on Aneka.

We can now explore the single steps and see how to set up the
AnekaApplication instance and configure it for its execution.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// Reads the configuration and initializes the AnekaApplication instance.

 /// </summary>

 protected void Init()

 {

 Configuration configuration = null;

 if (string.IsNullOrEmpty(this.configPath) == true)

 {

 configuration = Configuration.GetConfiguration(();

 }

 else

 {

 configuration = Configuration.GetConfiguration(this.configPath);

 }

 // we set this force to false because

 // we want to handle the resubmission

 // of failed threads.

 configuration.SingleSubmission = false;

 // we initialize the AnekaApplication instance with the

 // selected configuration object and the components required

 // for the Thread Model

 this.application =

 new AnekaApplication<AnekaThread, ThreadManager>(configuration);

 }

}

Listing 6 - Init() method.

Listing 6 reports the body of the Init method. The method performs to very
basic steps:

• Configuration setup : if the configuration path has been the static
method Configuration.GetConfiguration(string) is invoked to read to
read the information form the given file. If the configuration path has
not been set, the static method Configuration.GetConfiguration() is
called. This method will first look for the default configuration file (in
this case: warholizer.exe.config) and if not found it will create a default
configuration object. The default values for the Configuration class can
been seen in the conf.xml file (see Figure 5). Once the configuration
instance has been created the value of SingleSubmission is set to false.
The reason for this is because in case some threads are failed they will
be restarted again.

NOTE: The Thread Model is naturally based on the
coordinated execution of remotely executable threads
that can be started at any time. The SingleSubmission
property forces the behavior of the AnekaApplication to
a single submission of all the AnekaThread instances
that have been explicitly added to the AnekaApplication
before calling the method
AnekaApplication.SubmitExecution. Since with the
Thread Model the AnekaThread instances are not
explicitly added to the AnekaApplication setting
SingleSubmission to true would lead to an unexpected
behaviour and it could cause the premature termination
of the application. This problem is even worse when we
want to handle the resubmission of the failed threads. It
is then a general recommendation to not to use
SingleSubmission set to true when using the
Thread Model.

• AnekaApplication initialization : this step is accomplished by simply
initializing the application field and passing as parameter the
Configuration object that has been obtained at the previous step. Since
the AnekaApplication class is a generic type its initialization implies
specifying the actual types used by the application. In the case of the
Thread Model we will specialize the AnekaApplication class by using
AnekaThread in place of the WorkUnit and ThreadManager in place of
IApplicationManager.

The next step of the process is performed by the
WarholApplication.StartExecution method that takes as input the Bitmap
instance read from the input file and creates the AnekaThread instances as
described in Listing 7.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void StartExecution(Bitmap source)

 {

 this.running = new List<AnekaThread>();

 WarholFilter[] filters = this.CreateFilters(source);

 // creates an AnekaThread for each filter

 foreach (WarholFilter filter in filters)

 {

 AnekaThread thread = new AnekaThread(new ThreadStart(filter.Apply),

 this.application);

 thread.Start();

 this.running.Add(thread);

 }

 }

 }

}

Listing 7 - StartExecution(Bitmap) method.

The interesting bits in this method are concentrated within the foreach loop.
For each WarholFilter instance that has been created a new instance of
AnekaThread is initialized and configured to run the WarholFilter.Apply
method. Each AnekaThread also need to have a reference to the
AnekaApplication it belongs to. The second statement simply starts the
execution of the AnekaThread instance by calling AnekaThread.Start().

These two statements constitute the common operations required to
configure and start a AnekaThread instance. We also add this instance to the
list of running threads in order to keep track of its reference and being able to
get the results once the AnekaThread has completed its execution.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 protected void WaitForCompletion()

 {

 this.done = new List<WarholFilter>();

 bool bSomeToGo = true;

 while (bSomeToGo == true)

 {

 foreach (AnekaThread thread in this.running)

 {

 thread.Join();

 }

 for (int i = 0; i < this.running.Count; i++)

 {

 AnekaThread thread = this.running[i];

 if (thread.State == WorkUnitState.Completed)

 {

 this.running.RemoveAt(i);

 i--;

 WarholFilter filter = (WarholFilter) thread.Target;

 this.done.Add(filter);

 }

 else

 {

 // it must be failed...

 thread.Start();

 }

 }

 bSomeToGo = this.running.Count > 0;

 }

 }

 }

}

Listing 8 - WaitForCompletion() method.

This method exposes another classic synchronization pattern that is used
while creating multi-threaded applications: threads synchronization. In this
specific case we simply want to implement a barrier for all threads. This can
be easily done by calling the AnekaThread.Join() method on all the instances
that we have started and that are contained in the running list.

The method uses a while loop that will terminate once all the results have
been collected. Inside the while loop two basic steps are performed:

• Wait for thread completion : the method invoke the AnekaThread.Join()
method on all the threads contained in the running list. This call makes
the application to wait until the thread terminate.

• Check thread results : once all the threads have terminated we iterate
again the running list to check whether some thread has failed its
execution or not by looking at the State property. If the thread has
successfully completed its execution its state is set to
WorkUnitState.Completed. In this case we simply remove the thread

from the running list and add WarholFilter instance referenced by the
AnekaThread.Target property into the done list. If the other cases the
thread is simply restarted.

The loop terminates when the running list is empty. This means that all the
threads have successfully completed their execution and all the filters have
been collected into the done list.

namespace Aneka.Examples.ThreadDemo

{

 public class WarholApplication

 {

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void ComposeResult(Bitmap source)

 {

 Bitmap output = new Bitmap(source.Width * this.repeatX,

 source.Height * this.repeatY,

 source.PixelFormat);

 Graphics graphics = Graphics.FromImage(output);

 int row = 0, col = 0;

 foreach (WarholFilter filter in this.done)

 {

 graphics.DrawImage(filter.Image, row * source.Width,

 col * source.Height);

 row++;

 if (row == this.repeatX)

 {

 row = 0;

 col++;

 }

 }

 graphics.Dispose();

 if (string.IsNullOrEmpty(this.outputPath) == true)

 {

 this.outputPath = this.GetNewName(this.inputPath, "warhol");

 }

 output.Save(this.outputPath);

 }

}

Listing 9 - ComposeResult(Bitmap) method.

The next logical step is constituted by the processing of the result and the
creation of the final output image. These tasks are accomplished into the
AnekaThread.ComposeResult method whose content is reported in Listing 9.
The interesting bits in this method are concentrated within the foreach loop.
For each WarholFilter instance that is contained into the done list the
processed image exposed by the WarholFilter.Image property is drawn into
the final output image in the position identified by the row and col local
variables. The member field repeatX is used to identify the end of a line and
move to the next colum.

After the output bitmap has been composed it is saved to the file pointed by
OutputPath property or to an automatically generated file name by invoking
the WarholApplication.GetNewName method.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Creates an array of WarholFilter instances each of them configured

 /// with the same input image and a different palette.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 /// <returns>Array of filters.</returns>

 protected virtual WarholFilter[] CreateFilters(Bitmap source)

 {

 WarholFilter[] filters = new WarholFilter[4];

 WarholFilter one = new WarholFilter();

 one.Image = source;

 one.Palette = WarholFilter.FuchsiaGreenWhite;

 filters[0] = one;

 WarholFilter two = new WarholFilter();

 two.Image = source;

 two.Palette = WarholFilter.YellowGreenNavy;

 filters[1] = two;

 WarholFilter three = new WarholFilter();

 three.Image = source;

 three.Palette = WarholFilter.FuchsiaOrangeBlue;

 filters[2] = three;

 WarholFilter four = new WarholFilter();

 four.Image = source;

 four.Palette = WarholFilter.GreenOrangeGainsboro;

 filters[3] = four;

 this.repeatX = 2;

 this.repeatY = 2;

 return filters;

 }

 }

}

Listing 10 - CreateFilters(Bitmap) method.

The last method that we want to explore is the
WarholApplication.CreateFilters method that is responsible of creating all the
filter instances and define the number of rows and columns into which the
final image will be organized. By separating the creation of filters into this
method we can easily customize the output image by simply overriding this
method and, for example, creating a final image that is composed by 9
samples of the original images or simply changing the colors of the palette.

4.5 Program: Putting all together

The program class implements a simple command line parser that reads the
arguments of given by the user, checks whether they are correct, configures
the WarholApplication class and starts the execution of the filter by invoking
the Run() method. If the user has not provided the right parameters a simple
command line help is show.

The class defines only two static methods: one is the entry point of the
application (Program.Main(string[])) and the other one shows the command
line help (Program.ShowHelp()).

// File: Program.cs

namespace Aneka.Examples.ThreadDemo

{

 /// <summary>

 /// Class Program. Virtualizes the execution of WarholFilter by using the

 /// Thread Model. This class simply parses the command line arguments passed

 /// to the process and sets up the WarholApplication.

 /// </summary>

 public class Program

 {

 /// <summary>

 /// Creates an array of WarholFilter instances each of them configured

 /// with the same input image and a different palette.

 /// </summary>

 /// <param name="args">Command line arguments.</param>

 static void Main(string[] args)

 {

 if (args.Length >= 2)

 {

 string inputFile = args[0];

 string outputFile = args[1];

 string confFile = null;

 if (File.Exists(inputFile) == false)

 {

 Console.WriteLine("warholizer: [ERROR] input file [{0}] not" +

 "found. EXIT.", inputFile);

 return;

 }

 else

 {

 // the infput file exists...

 // now we check for the configuration file.

 if (args.Length == 3)

 {

 confFile = args[2];

 if (File.Exists(confFile) == false)

 {

 Console.WriteLine("warholizer: [ERROR] configuration" +

 "file [{0}] not found. EXIT", inputFile);

 return;

 }

 }

 // now we check for the out file to simply issue

 // a warning if the file exists...

 if (File.Exists(outputFile) == true)

 {

 Console.WriteLine("warholizer: [WARNING] output file [{0}]"

 + "already exists and it will be overwritten.", inputFile);

 }

 }

 // ok at this point we have the following conditions

 // 1. inputPath exists

 // 2. confFile exists

 // we can start the application..

 WarholApplication app = new WarholApplication();

 app.InputPath = inputFile;

 app.OutputPath = outputFile;

 app.ConfigPath = confFile;

 try

 {

 app.Run();

 }

 catch (Exception ex)

 {

 Console.WriteLine("warholizer: [ERROR] exception:");

 Console.WriteLine("\tMessage: " + ex.Message);

 Console.WriteLine("\tStacktrace: " + ex.StackTrace);

 Console.WriteLine("EXIT");

 }

 }

 else

 {

 Program.ShowHelp();

 }

 }

 /// <summary>

 /// Shows a command line help about the usage of the application.

 /// </summary>

 static void ShowHelp() { }

 }

}

Listing 11 - Program class.

4.6 Compiling and building the Application

 4.6.1 Building the demo in Visual Studio 2005

It is possible to build and run the application by simply opening the Visual
Studio 2005 Project ThreadDemo.csproj in the ThreadDemo directory and
build the project. Visual Studio will created the executable warholizer.exe
along with all the libraries required to run in the ThreadDemo\bin\Debug
directory (Configuration: Debug).

Visual Studio 2005 will also copy the conf.xml and the marilyn.jpg file into the
bin\Debug directory of the application. These two files can be used to test the
execution of the application.

 4.6.2 Building the demo from the command line

If you do not have the Visual Studio 2005 installed but you have c# 2.0
compiler (let us assume that the compiler is the one shipped with .NET
framework SDK and that is called cs.exe) it is possible to compile the
application from the command line.

Dependencies

The first step that is required is identifying the dependencies that this
application relies on to execute:

1. Most of the support classes that we have used to build the application

are defined in the System.dll assembly that is referenced by default and
contained in the Global Assembly Cache (GAC).

2. To perform the operations on the images we have used the Bitmap class
which is defined in the System.Drawing namespace (GAC:
System.Drawing.dll).

3. In order to use the Thread Model we used the types defined in the
Aneka.Threading namespace that is implemented in the
Aneka.Threading.dll.

4. Any application that uses the Aneka APIs has an implicit dependency on
the following assemblies:

1. Aneka.dll (Namespaces: Aneka, Aneka.Entity, Aneka.Security)

2. Aneka.Data.dll (Namespaces: Aneka.Data, Aneka.Data.Entity)

3. Aneka.Util.dll (Namespace: Aneka (utility classes))

The complete set of dependencies is then given by: System.dll,
System.Drawing.dll, Aneka.dll, Aneka.Threading.dll, Aneka.Data.dll,
Aneka.Util.dll. We can find the libraries that relate to Aneka into the [Aneka
Installation Directory]\bin directory. The easiest thing to do is then copy these
libraries to the ThreadDemo directory. The other two libraries are registered
in the GAC, hence we do not need to copy them.

Compilation

Once we have copied the required libraries into the ThreadDemo directory we
can invoke the C# 2.0 compiler to compile the three files (WarholFilter.cs,
WarholApplication.cs, and Program.cs) that compose the application with the
following command line:

csc /r:System.dll /r:System.Drawing.dll /r:Aneka.dll /r:Aneka.Data.dll
/r:Aneka.Util.dll /r:Aneka.Threading.dll /t:exe /out:warholizer.exe
Program.cs WarholFilter.cs WarholApplication.cs

The compilation process will create the warholizer.exe executable in the
ThreadDemo directory.

 4.6.3 Running the application

In order to run the application it is necessary to connect to have Aneka
installed either on the local machine or on a remote machine that can be
reached through a TCP connection. We assume, for the sake of simplicity, that
Aneka is running on the local machine with the default installation (port:
9090). In this case we can simply run test the application by running the from
the command line the following:

warholizer.exe marilyn.jpg

This application will produce the file marilyn.warhol.jpg in the same directory.
We can also provide a different name (for example foo.jpg) of the output file
by executing the follwing:

warholizer.exe marilyn.jpg foo.jpg

If we need to customize the way in which the application connects to Aneka.
We can simply edit the configuration file conf.xml (for example we need to
change the address where the application should connect) and run the
following:

warholizer.exe marilyn.jpg foo.jpg conf.xml

Figure 6 shows the input file and a possible outcome of the execution of
warholizer on the given input file.

Figure 6. Input (left) and output (right) images (not in original sizes).

5. Conclusions
In this tutorial we have introduced the Thread Model for developing
distributed applications based on remotely executable threads with Aneka.
The Thread Model allows developers to quickly virtualize multi-threaded
applications with Aneka. It introduces the concept of AnekaThread that
represents a thread that is executed on a remote computing node in the
Aneka network. The AnekaThread class exposes a subset of the operations
offered by the System.Threading.Thread class, this makes the transition from
a local multi-threaded application to a distributed multi-threaded application
straightforward.

As happens for local threads a AnekaThread is configured with a ThreadStart
object that wraps the information required run a method. It is possible to
start, join, and abort a thread in the same manner as we do with local
threads. Few restrictions apply to the execution of remote threads. As
explained in the tutorial, AnekaThread instances cannot be paused or run
static methods and they do not support all the asynchronous operations of

the Thread class. Given these limitations, the Thread Model remains still
appealing for developers that want to take advantage of distributed
computing systems without learning a new programming model.

In order to explain and illustrate the approach to the development of
distributed application by using the Thread Model a simple application has
been developed: warholizer. This application is a multi-threaded image filters
that reproduces the Warhol Effect on a given picture by leveraging the
computation on Aneka. In particular the following aspects have been
discussed:

• What is the Thread Model and how it relates with the common .NET
threading APIs.

• How to create and configure a AnekaApplication for the Thread Model.

• How to create and configure a AnekaThread.

• How to control the execution of a Thread Model application by using
AnekaThread instances.

• How to implement the common synchronization patterns used in multi-
threaded applications.

• How to structure the source code of an application that is based on the
Thread Model.

• How to compile and build a working example from the command line.

This tutorial has also introduced the general notions concerning a distributed
system based on Aneka and the essential information for using the client APIs
that are common to all programming models. For a more complete and
detailed description of the behavior of these APIs it is possible to explore the
APIs documentation.

	1. Prerequisites
	2. Introduction
	3. Thread Model
	3.1 Local vs Remote Threads
	3.2 Working with Threads
	3.3 Additional Considerations
	 3.3.1 Serialization
	 3.3.2 Thread Programming Model vs Common APIs

	4. Example: Distributed Warhol Filter.
	4.1 What is the Warhol Effect?
	4.2 Application Structure
	4.3 WarholFilter: Filter Implementation
	 4.3.1 Complexity Analisys

	4.4 WarholApplication: Distributed Filtering Coordination
	4.5 Program: Putting all together
	4.6 Compiling and building the Application
	 4.6.1 Building the demo in Visual Studio 2005
	 4.6.2 Building the demo from the command line
	 4.6.3 Running the application

	5. Conclusions

