
Aneka Tutorial Series

Developing Task Model Applications

Christian Vecchiola and Xingchen Chu

Abstract
This tutorial describes the Aneka Task Execution Model and
explains how to create distributed applications based on it. It
illustrates some examples provided with the Aneka distribution
which are built on top of the Task Model. It provides a detailed
step by step guide for users on how to create a simple
application that submit multiple tasks to Aneka and collect the
results. After having read this tutorial the users will be able to
develop their own application on top the Aneka Task Model.

Document Status
Creation Date: 05/01/08

Version: 0.1

Classification: User

Authors: Christian Vecchiola, Xingchen Chu

Contributors: Alexandre di Costanzo
Marcos Dias de Assunçao

Last Revision Date: 09/17/09

Status: Draft

1. Prerequisites
In order to fully understand this tutorial the user should be familiar with the
general concepts of Grid and Cloud Computing, Object Oriented programming
and generics, distributed systems, and a good understanding of the .NET
framework 2.0 and C#.

The practical part of the tutorial requires a working installation of Aneka. It is
also suggested to have Microsoft Visual Studio 2005 (any edition) with C#
package installed1 even if not strictly required.

1 Any default installation of Visual Studio 2005 and Visual Studio 2005 Express comes with all the
components required to complete this tutorial installed except of Aneka, which has to be
downloaded and installed separately.

2. Introduction
Aneka allows different kind of applications to be executed on the same grid
infrastructure. In order to support such flexibility it provides different
abstractions through which it is possible to implement distributed
applications. These abstractions map to different execution models. Currently
Aneka supports three different execution models:

• Task Execution Model

• Thread Execution Model

• MapReduce Execution Model

Each execution model is composed by four different elements: the WorkUnit,
the Scheduler, the Executor, and the Manager. The WorkUnit defines the
granularity of the model; in other words, it defines the smallest computational
unit that is directly handled by the Aneka infrastructure. Within Aneka, a
collection of related work units define an application. The Scheduler is
responsible for organizing the execution of work units composing the
applications, dispatching them to different nodes, getting back the results,
and providing them to the end user. The Executor is responsible for actually
executing one or more work units, while the Manager is the client component
which interacts with the Aneka system to start an application and collects the
results. A view of the system is given in Figure 1.

Figure 1. System Components View.

Hence, for the Task Model there will be a specific WorkUnit called AnekaTask,

a Task Scheduler, a Task Executor, and a Task Manager. In order to develop an
application for Aneka the user does not have to know all these components;
Aneka handles a lot of the work by itself without the user contribution. Only
few things users are required to know:

• how to define AnekaTask instances specific to the application that is
being defined;

• how to create a AnekaApplication and use it for task submission;

• how to control the AnekaApplication and collect the results.

This holds not only for the Task Model but for all execution models supported
by the Aneka.

In the remainder of this tutorial will then concentrate on the Task Model, but
many of the concepts described can be applied to other execution models.

3. Task Model

3.1 What are Tasks?

The Task Model defines an application as a collection of tasks. Tasks are
independent work units that can be executed in any order by the Scheduler.
Within the Task Model a task comprises all the components required for its
execution on a grid node.

The Task Model is the right solution to use when the distributed application
consists of a collection of independent jobs that are executed on a grid and
whose results are collected and composed together by the end user. In this
scenario the user creates a set of tasks, submits them to Aneka, and waits for
the results.

More complex scenarios are characterized by the dynamic creation of tasks
while the application is executing, based on the previously executed tasks.
Even in this case, from the Aneka point of view the tasks submitted for
execution are independent and it is responsibility of the user to ensure the
proper execution order and sequencing.

Tasks are sufficiently general abstractions that are useful to model the jobs of
embarrassingly parallel problems. They provide a simple operation Execute
through which the user can specify the computation that can be carried out
by the task.

3.2 Working with Tasks

During the execution of the task there are two components that are involved:
the AnekaTask class and the ITask interface.

The AnekaTask class represents the work unit in the Task Model. The user
creates AnekaTask instances, configures them, and submit them to the grid

by means of the AnekaApplication class. Aneka deals with AnekaTask
instances which are then responsible for executing the job they contain.

namespace Aneka.Tasks

{

 /// <summary>

 /// Class AnekaTask. Represents the basic unit of work

 /// in the Task Model. It wraps a generic task to execute.

 /// </summary>

 public class AnekaTask : WorkUnit

 {

 /// <summary>

 /// Gets the User Task to execute.

 /// </summary>

 public ITask UserTask { get { ... } internal set { ... } }

 /// <summary>

 /// Gets a value indicating whether the current grid task

 /// is running. A grid WorkUnit is considered running if it

 /// is not Unstarted | Stopped | Completed | Rejected | Aborted.

 /// </summary>

 public bool IsRunning { get { ... } }

 /// <summary>

 /// Creates an instance of the AnekaTask.

 /// </summary>

 /// <param name="task">user task to execute.</param>

 public AnekaTask(ITask task)

 { ... }

 }

}

Listing 1 - AnekaTask class.

Listing 1 presents the public interface of the AnekaTask class. This is a
framework class that is used to wrap the specific user task that will execute
once scheduled.

In order to create a AnekaTask instance it is necessary to pass to the
constructor a non null ITask instance. This instance represents the task that
will be executed and it is exposed through the UserTask property. Listing 2
displays the ITask interface. This interface is very minimal and exposes only
one method which is the Execute method. This method is called when the
AnekaTask instance is executed on a grid node. Inside this method concrete
classes have to define the code to perform what is needed for the specific
distributed application that is being implemented.

namespace Aneka.Tasks

{

 /// <summary>

 /// Interface ITask. Defines a contract for task

 /// implementation. It provides an entry point

 /// for specific task execution.

 /// </summary>

 /// <remarks>

 /// Concrete classes must be marked Serializable

 /// or implement the ISerializable interface.

 /// </remarks>

 public interface ITask

 {

 /// <summary>

 /// Executes the task.

 /// </summary>

public void Execute();

}

}

Listing 2 - ITask interface.

Concrete classes implementing this interface must be marked Serializable or
implement the ISerializable interface because AnekaTask instances need to be
serialized in order to be transmitted over the network.

As shown above the creation of the work units of the Task Model is really
simply and intuitive. The following steps summarize what is needed to create
application specific grid tasks:

1. define a class MyTask which implements ITask and provide the specific
code for the Execute method;

2. create as many MyTask instances as needed by your application;

3. wrap each MyTask instance into a AnekaTask instance by passing it to
the AnekaTask constructor;

4. submit the AnekaTask instances to Aneka by means of the
AnekaApplication class.

Listing 3 provides a template code implementing the steps described. In the
example the MyTask class simply evaluates the value of a complex function
for the given double value X, and exposes the result by means of the Value
property. The example proposed in the listing uses the Normal distribution as
test function. Obviously, this is a really trivial example meant only to show
how to implement a task.

// File: MyTaskDemo.cs

using Aneka.Entity;

using Aneka.Tasks;

namespace Aneka.Examples.TaskDemo

{

 // Step 1: definition of the MyTask class.

 /// <summary>

 /// Class MyTask. Simple task function wrapping

 /// the Gaussian normal distribution. It computes

 /// the value of a given point.

 /// </summary>

 [Serializable]

 public class MyTask : ITask

 {

 /// <summary>

 /// value where to calculate the

 /// Gaussian normal distribution.

 /// </summary>

 private double x;

 /// <summary>

 /// Gets, sets the value where to calculate

 /// the Gaussian normal distribution.

 /// </summary>

 public double X { get { return this.x; } set { this.x = value; } }

 /// <summary>

 /// value where to calculate the

 /// Gaussian normal distribution.

 /// </summary>

 private double result;

 /// <summary>

 /// Gets, sets the value where to calculate

 /// the Gaussian normal distribution.

 /// </summary>

 public double Result

 { get { return this.result; } set { this.result = value; } }

 /// <summary>

 /// Creates an instance of MyTask.

 /// </summary>

 public MyTask() {}

 #region ITask Members

 /// <summary>

 /// Evaluate the Gaussian normal distribution

 /// for the given value of x.

 /// </summary>

 public void Execute()

 {

 this.result = (1 / (Math.Sqrt(2* Math.PI))) *

 Math.Exp(- (this.x * this.x) / 2);

 }

 #endregion

 }

 // Step 2-4: Task creation and submission

 /// <summary>

 /// Class Program. Simple Driver application

 /// that shows how to create tasks and submit

 /// them to the grid.

 /// </summary>

 /// <remarks>

 /// This class is a partial implementation and does

 /// not provide the complete steps for running the

 /// application on Aneka.

 /// </remarks>

 class MyTaskDemo

 {

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 AnekaApplication<AnekaTask,TaskManager> app = Setup(args);

 // create task instances and wrap them

 // into AnekaTask instances

 double step = 0.01;

 double min = -2.0;

 double max = 2.0;

 while (min <= max)

 {

 // Step 2. create a task instance

 MyTask task = new MyTask();

 task.X = min;

 // Step 3. wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // Step 4. Submit the execution

 app.ExecutionWorkUnit(gt);

 min += step;

 }

 }

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 private static AnekaApplication<AnekaTask,TaskManager>

 Setup(string[] args)

 { }

}

Listing 3 - Task creation and submission.

As it can be noticed, in order to use the Task Model we have to include the
namespaces Aneka.Tasks and Aneka.Entity. In general, any application that
is based on a specific programming model supported by Aneka relies on two
different set of dependencies:

• Core APIs : these dependencies are common to all programming model
and are constituted by the following three libraries:

• Aneka.dll (Namespaces: Aneka, Aneka.Entity, Aneka.Security): core
classes of the common API (i.e.: WorkUnit, AnekaApplication,
Configuration);

• Aneka.Data.dll (Namespaces: Aneka.Data, Aneka.Data.Entity):
classes supporting file management (i.e.: FileData, HostData);

• Aneka.Util.dll (Namespace: Aneka): support classes used by the
common APIs.

• Programming Model APIs : these dependencies are specific to the
programming used and in the case of the Task Model consist in the
Aneka.Tasks.dll. In general the APIs of a programming model are
organized into three different namespaces that separate the
components required for executing that model:

• Aneka.[Model] (assembly: Aneka.[Model].dll)

• Aneka.[Model].Scheduling (assembly: Aneka.[Model].Scheduling.dll)

• Aneka.[Model].Execution (assembly: Aneka.[Model].Execution.dll)

In order to develop an application based on a specific programming
model it is necessary to reference only the first assembly, which
contains the core elements of the model. The other two components are
only required by the Aneka container for respecively coordinate the
execution of the model and execute their specific units of computation.

All these libraries are located into the [Aneka Installation Directory]\bin
directory and need to be copied into the directory of the TaskDemo project to
successfully build the application.

It is important to notice that the MyTask class needs to be marked Serializable
in order to be used as an ITask instance. Once the MyTask class has been
defined, the submission of tasks to Aneka is really simple: we need just to
configure the tasks with the required data for the computation, wrap them
into a AnekaTask instance and submit it by using the AnekaApplication
instance. On the grid node the Execute method will be invoked and after its
execution the task will be sent back to the user. In order to submit tasks it is
important to correctly setup the AnekaApplication instance.

Listing 3 contains almost everything needed to submit tasks to Aneka2. Once
we have set up a Visual Studio project referencing the previous mentioned
assemblies it is only necessary to write the content of Listing 3 and compile it
as a console application. We can also build the application from the command
line by using the following command:

csc /r:System.dll /r:Aneka.Tasks.dll /r:Aneka.dll /r:Aneka.Data.dll
/r:Aneka.Util.dll /main:Aneka.Examples.Program /out:MyTaskDemo.exe

/target:exe MyTaskDemo.cs

Let us inspect the previous command line. It tells the C# compiler to
reference the previously mentioned assembly, to produce an executable
whose name is MyTaskDemo.exe by compiling the MyTaskDemo.cs file.

3.3 AnekaApplication Configuration and Management

So far we just saw how to create tasks and submit tasks to Aneka by means of
the AnekaApplication class. We did not say anything about how to configure a
AnekaApplication instance, monitor its execution, and getting the results
back. These operations are fundamental when working with the Task Model
because the AnekaTask class does not provide any feedback during execution,
but the results of the computation are obtained by interacting with the
AnekaApplication instance.

 3.3.1 Getting Information from AnekaApplication

The AnekaApplication class represents the gateway to a given Aneka grid. In
order to interact with an installation of Aneka it is necessary to create and
configure a AnekaApplication instance. This class provides:

• properties for querying the application status and retrieving general
informations;

• methods for submitting jobs and controlling the execution;

• events for monitoring the execution and getting the results of the
computation.

Listing 4 provides a complete reference of the AnekaApplication public
interface.

namespace Aneka.Entity

{

 /// <summary>

 /// Class AnekaApplication. Represents an application which can be executed on

 /// Aneka grids. It manages a collection of work units which are submitted to

 /// the grid for execution.

 /// </summary>

2 For now we just skip the definition of the Setup method and we assume it as provided.

 /// <typeparam name="W">work unit specific type</typeparam>

 /// <typeparam name="M">application manager</typeparam>

 public class AnekaApplication<W, M>

 where W : WorkUnit

 where M : IApplicationManager, new()

 {

 #region Properties

 /// <summary>

 /// Gets the home directory used by the application to store files.

 /// </summary>

 public string Home { get { ... } }

 /// <summary>

 /// Gets the application state.

 /// </summary>

 public ApplicationState State { get { ... } }

 /// <summary>

 /// Gets the underlying application manager.

 /// </summary>

 public M ApplicationManager { get { ... } }

 /// <summary>

 /// Gets true if the application is finished.

 /// </summary>

 public bool Finished { get { ... } }

 /// <summary>

 /// Gets, sets the user credential

 /// required to execute the application.

 /// </summary>

 public ICredential UserCredential { get { ... } set { ... } }

 /// <summary>

 /// Gets the application identifier.

 /// </summary>

 public string Id { get { ... } }

 /// <summary>

 /// Gets the application creation

 /// date and time.

 /// </summary>

 public DateTime CreatedDateTime { get { ... } }

 /// <summary>

 /// Gets, sets the application display name.

 /// The application display name is the one

 /// that is used for display purposes.

 /// </summary>

 public string DisplayName { get { ... } set { ... } }

 #endregion

 #region Constructors

 /// <summary>

 /// Creates a AnekaApplication instance with

 /// the given user credentials.

 /// </summary>

 /// <param name="configuration">configuration</param>

 public AnekaApplication(Configuration configuration) { ... }

 /// <summary>

 /// Creates a AnekaApplication instance with the

 /// given display name and configuration.

 /// </summary>

 /// <param name="displayName">application name</param>

 /// <param name="configuration">configuration</param>

 public AnekaApplication(string displayName, Configuration configuration)

 { ... }

 #endregion

 #region Events

 /// <summary>

 /// Fires whenever a work unit belonging to the application

 /// changes status to finished.

 /// </summary>

 public event EventHandler<WorkUnitEventArgs<W>> WorkUnitFinished;

 /// <summary>

 /// Fires whenever a work unit belonging to the application

 /// changes status to failed.

 /// </summary>

 public event EventHandler<WorkUnitEventArgs<W>> WorkUnitFailed;

 /// <summary>

 /// Fires whenever a work unit belonging to the application

 /// changes status to failed.

 /// </summary>

 public event EventHandler<WorkUnitEventArgs<W>> WorkUnitAborted;

 /// <summary>

 /// Fires when application execution is completed.

 /// </summary>

 public event EventHandler<ApplicationEventArgs> ApplicationFinished;

 #endregion

 #region Work Units Management

 /// <summary>

 /// Adds a work unit to the application.

 /// </summary>

 /// <param name="workUnit">work unit</param>

 public void AddWorkUnit(W workUnit) { ... }

 /// <summary>

 /// Deletes a work unit from the list of the

 /// work units of the application.

 /// </summary>

 /// <parameter name="workUnit">work unit</param>

 public void DeleteWorkUnit(W workUnit) { ... }

 /// <summary>

 /// Gets the work unit corresponding to

 /// the given index.

 /// <summary>

 /// <param name="index">work unit string identifier</param>

 public W this[string index] { get { ... } }

 /// <summary>

 /// Adds the given dependencies to the dependencies

 /// statically inferred by using reflection.

 /// <summary>

 /// <param name="dependencies">list of dynamic dependent modules</param>

 public void ProvideDynamicDependencies(IList<ModuleDependency> dependencies)

 { ... }

 #endregion

 #region Execution

 /// <summary>

 /// Submits the application to the grid.

 /// </summary>

 public void SubmitExecution() { ... }

 /// <summary>

 /// Execute a work unit while application is running...

 /// </summary>

 /// <param name="workUnit">work unit</param>

 public void ExecuteWorkUnit(W workUnit) { ... }

 /// <summary>

 /// Stop the single work unit.

 /// </summary>

 /// <param name="workUnitId">work unit identifier</param>

 public void StopWorkUnit(string workUnitId) { ... }

 /// <summary>

 /// Stop the execution of application.

 /// </summary>

 public void StopExecution() { ... }

 #endregion

 #region File Management

 /// <summary>

 /// Adds the selected file to the list of files shared among

 /// all the work units.

 /// </summary>

 /// <param name="filePath">path to the file to add</param>

 public void AddSharedFile(string filePath) { ... }

 /// <summary>

 /// Removes the selected file from the list of files shared among all the

 /// work units.

 /// </summary>

 /// <param name="filePath">path to the file to remove</param>

 public void RemoveSharedFile(string filePath) { ... }

 #endregion

 }

}

Listing 4 - AnekaApplication class public interface.

The first thing that can be noticed that the AnekaApplication class is a generic
type. And that it is specialized during instantiation with the specific execution
model we want to use. We need to provide two different elements:

• WorkUnit specific type W;

• IApplicationManager specific type M;

These elements are strongly coupled and cannot be chosen separately. The
mapping is the following:

• W: AnekaTask then M: TaskManager;

• W: AnekaThread then M: ThreadManager;

• ...

The AnekaApplication class exposes some properties that are useful to
monitor the status of the application and provide information about it. For
example we can check the boolean property Finished to know whether the
application is terminated or not. For a more detailed information about the
execution status the can check the State property. The state property is
defined as follows:

namespace Aneka.Entity

{

 /// <summary>

 /// Enum ApplicationState. Enumerates the different states through which the

 /// application transit.

 /// </summary>

 [Serializable]

 [Flags]

 public enum ApplicationState

 {

 /// <summary>

 /// Initial state of the application.

 /// </summary>

 UNSUBMITTED = 1,

 /// <summary>

 /// This flag is set when the application is submitted [transient state].

 /// </summary>

 SUBMITTED = 2,

 /// <summary>

 /// This flag is set when the application is running.

 /// </summary>

 RUNNING = 4,

 /// <summary>

 /// This flag is set when the application completes.

 /// </summary>

 FINISHED = 8,

 /// <summary>

 /// If this flag is set an error is occurred.

 /// </summary>

 ERROR = 16

 }

}

Listing 5 - ApplicationState enumeration.

Other useful informations are:

• Id: automatically generated unique identifier for the application.

• DisplayName: gets and sets the name of the application. This
information is only used for recording purposes and visualization.

• CreatedDateTime: gets the creation date of the application.

• UserCredential: gets and sets the user credential used to authenticate
the client application to Aneka.

The AnekaApplication class provides also access to the underlying application
manager by means of the ApplicationManager property. Only sophisticated
applications that require a finer control on the task execution and monitoring
require the user to interact with the application manager. These issues go
beyond the scope of this tutorial and will not be addressed anymore.

 3.3.2 Application Configuration

In order to create run the Task Model we need to create the AnekaApplication
instance first. While it is possible to omit the display name of the application,
we need to provide a Configuration object which tunes the behavior of the
application being created.

namespace Aneka.Entity

{

 /// <summary>

 /// Class Configuration. Wraps the configuration parameters required

 /// to run distributed applications.

 /// </summary>

 [Serializable]

 public class Configuration

 {

 /// <summary>

 /// Gets, sets the user credentials to authenticate the client to Aneka.

 /// </summary>

 public virtual ICredential UserCredential { get { ... } set { .. } }

 /// <summary>

 /// If true, the submission of jobs to the grid is performed only once.

 /// </summary>

 public virtual bool SingleSubmission { get { ... } set { ... } }

 /// <summary>

 /// If true, uses the file transfer management system.

 /// </summary>

 public virtual bool UseFileTransfer { get { ... } set { ... } }

 /// <summary>

 /// Specifies the resubmission strategy to adopt when a task fails.

 /// </summary>

 public virtual ResubmitMode ResubmitMode { get { ... } set { ... } }

 /// <summary>

 /// Gets and sets the time polling interval used by the application to query

 /// the grid for job status.

 /// </summary>

 public virtual int PollingTime { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the Uri used to contact the Aneka scheduler service which is

 /// the gateway to Aneka grids.

 /// </summary>

 public virtual Uri SchedulerUri { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the path to the local directory that will be used

 /// to store the output files of the application.

 /// </summary>

 public virtual string Workspace { get { ... } set { ... } }

 /// <summary>

 /// If true all the output files for all the work units are stored

 /// in the same output directory instead of creating sub directory

 /// for each work unit.

 /// </summary>

 public virtual bool ShareOutputDirectory { get { ... } set { ... } }

 /// <summary>

 /// If true activates logging.

 /// </summary>

 public virtual bool LogMessages { get { ... } set { ... } }

 /// <summary>

 /// Creates an instance of the Configuration class.

 /// </summary>

 public Configuration() { ... }

 /// <summary>

 /// Loads the configuration from the default config file.

 /// </summary>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration() { ... }

 /// <summary>

 /// Loads the configuration from the given config file.

 /// </summary>

 /// <param name="confPath">path to the configuration file</param>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration(string confPath) { ... }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <param name="bStrict">boolean value indicating whether to raise

 /// exceptions if the property does not exist</param>

 /// <returns>Property value</returns>

 public string this[string propertyName, bool bStrict]

 { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets the property group corresponding to the given name.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name, or

 /// null</returns>

 public PropertyGroup GetGroup(string groupName) { ... }

 /// <summary>
 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(string groupName) { ... }

 /// <summary>

 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="group">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(PropertyGroup group) { ... }

 /// <summary>

 /// Removes the group of properties corresponding to the given name from the

 /// configuration if present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name if successfully

 /// removed, null otherwise</returns>

 public PropertyGroup RemoveGroup(string groupName) { ... }

 /// <summary>

 /// Checks whether the given instance is a configuration object and

 /// whether it contains the same information of the current instance.

 /// </summary>

 /// <param name="other">instance to compare with</param>

 /// <returns>true if the given instance is of type Configuration

 /// contains the same information of the current instance.</returns>

 public override bool Equals(object other) { ... }

}

}

Listing 6 - Configuration class public interface.

Listing 6 reports the public interface of the Configuration class. An instance of
the Configuration can be created programmatically or by reading the
application configuration file that comes with any .NET executable application.
In case we provide the configuration parameters through the application
configuration file it is possible to get the corresponding Configuration instance
simply by calling the static method Configuration.GetConfiguration() or by
using the overloaded version that allows us to specify the path of the
configuration file. These methods expect to find an XML file like the following:

Figure 2. Aneka Configuration File

There are few parameters which are worth to spend some more word for.
These are: SingleSubmission, ResubmitMode, and UserCredential.

SingleSubmission influences the check made by the application to verify its

completion status. When SingleSubmission is set the terminates its execution
when the list of task submitted to the grid is empty and all the tasks have
been returned and terminated their execution successfully. In case the
SingleSubmission parameter is set to false,it is responsibility of the user code
to detect the termination condition of the application and communicate it to
AnekaApplication instance. In many cases there is no need to dynamically
submit the jobs, but they can be provided all at once in a single submission as
shown in Listing 7. From here the name SingleSubmission.

NOTE: In this tutorial we will not discuss the use of the file transfer
support infrastructure. This feature allows to add additional
files to the entire AnekaApplication or the single WorkUnit.
The system will automatically transfer the files and retrieve
the output files in a complete transparent manner. For more
information about this feature it is possible to have a look at
the documentation of the Aneka.Data and
Aneka.Data.Entity documentation.

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 AnekaApplication<AnekaTask,TaskManager> app = Setup(args);

 // create task instances and wrap them

 // into AnekaTask instances

 double step = 0.0001;

 double min = -2.0;

 double max = 2.0;

 while (min <= max)

 {

 // Step 2. create a task instance

 MyTask task = new MyTask();

 task.X = min;

 // Step 3. wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // Step 4. instead of directly submitting

 // the task we add it to the application

 // local queue.

 app.AddWorkUnit(gt);

 min += step;

 }

 // Step 5. we submit all the tasks at once

 // this method simply iterates on the local

 // queue and submit the tasks.

 app.SubmitExecution();

 }

 }

}

Listing 7 - Task creation and submission in SingleSubmission mode.

The while loop shown in Listing 7 is a possible solution for submitting tasks to
Aneka: this is a single submission scenario, which is really useful for
independent bag of tasks applications. In this case SingleSubmission can be
set to true and the AnekaApplication class can automatically detect the
termination of the execution without the user intervention.

SingleSubmission and Application
Termination

SingleSubmission set to true, covers very simple scenarios
in which the tasks are submitted only at once. In this case
all the task to submit are added to the AnekaApplication
instance and the AnekaApplication.SubmitExecution()
method is invoked. This pattern implies that there will be
no further submissions of jobs. If this is not the case, it
is better to keep the SingleSubmission parameter set to
false.

If we set the SingleSubmission to false and use method
AnekaApplication.SubmitWorkUnit(...) in conjunction with
the method AnekaApplication.SubmitExecution() there are
chances that some task just simply get lost.

ResubmitMode allows users to tune the AnekaApplication behaviour. This
parameters specify which resubmission strategy to adopt when a task fail. You
can specify ResubmitMode.AUTO or ResubmitMode.MANUAL. In the first case
when a task fails Aneka will take the responsibility of resubmitting the task, in
the second case it is responsibility of the user to resubmit the task. More
details will be given in Section 3.3.4.

UserCredential allows to specify the authentication credentials used by the
client application to connect to Aneka and submit tasks. This property if of
type ICredential and in order to provide a concrete instance for this property
we can use the UserCredential class that is displayed in Listing 8 and allows
user to be authenticated by using providing a simple user name and
password. The class also exposes a list of groups that specify the roles that
the user can play in the system and the operations that he or she can
perform.

using System;

namespace Aneka.Security

{

 /// <summary>

 /// Interface ICredential. It provides the interface

 /// for all types of credential supported by the system.

 /// </summary>

 public interface ICredential

 {

 /// <summary>

 /// Gets, sets the unique identifier

 /// for the user credential.

 /// </summary>

 object Id { get; set; }

 /// <summary>

 /// Checks whether this instance is equal to the given credential.

 /// </summary>

 /// <param name="credential">credential</param>

 /// <returns>true if equal, false otherwise</returns>

 bool AreEqual(ICredential credential);

 /// <summary>

 /// Converts the credential data to a byte array.

 /// </summary>

 /// <returns>byte array containing the serialized

 /// credential instance</returns>

 byte[] ToByte();

 /// <summary>

 /// Constructs a credential instance from a byte stream.

 /// </summary>

 /// <param name="byteData">array of byte containing the serialized data of

 /// the credential instance</param>

 /// <returns>credential instance</returns>

 ICredential FromByte(byte[] byteData);

 }

 /// <summary>

 /// Class UserCredentials. Contains the information

 /// about the user by storing the username, the password,

 /// and the number of groups the user belongs to.

 /// </summary>

 [Serializable]

 public class UserCredentials : ICredential, IXmlSerializable

 {

 /// <summary>

 /// Gets, sets the user name of the user.

 /// </summary>

 public string Username { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the password for the user.

 /// </summary>

 public string Password { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the groups the user belongs to.

 /// </summary>

 public List<string> Groups { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the full name of the user.

 /// </summary>

 public string FullName { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the description of the user.

 /// </summary>

 public string Description { get { ... } set { ... } }

 /// <summary>

 /// Creates an instance of the UserCredentials type with blank user name

 /// and password.

 /// </summary>

 public UserCredentials(): this("", "", new List<string>()) { ... }

 /// <summary>

 /// Creates an instance of the UserCredentials type

 /// with given user name and password.

 /// </summary>

 /// <param name="username">user name</param>

 /// <param name="password">password</param>

 public UserCredentials(string username, string password) :

this(username, password, new List<string>())

 { ... }

 /// <summary>

 /// Creates an instance of the UserCredentials type with given user name,

 /// password, and set of groups the user belongs to.

 /// </summary>

 /// <param name="username">user name</param>

 /// <param name="password">password</param>

 /// <param name="grps">list of groups the user belongs to</param>

 public UserCredentials(string username, string password, List<string> grps)

 { ... }

 /// <summary>

 /// Creates an instance of the UserCredentials type with given user name,

 /// password, and full details.

 /// </summary>

 /// <param name="username">user name</param>

 /// <param name="password">password</param>

 /// <param name="fullname">list of groups the user belongs to</param>

 /// <param name="description">list of groups the user belongs to</param>

 public UserCredentials(string username, string password, string fullname,

 string description)

 { ... }

 #region ICredential Members

 ...

 #endregion

 #region IXmlSerializable Members

 ...

 #endregion

 }

}

Listing 8 ICredential interface, Role enumeration, and UserCredentials class.

In order to use this class we need to include the namespace Aneka.Security in
the namespace declaration. There is no need to reference additional
assemblies because this class if defined in the Aneka.dll library. The
ICredential interface does not specify anything except a property Id and
methods for saving the data into a byte array and restoring an instance from
it. This gives an high degree of flexibility in implementing authentication
techniques, the specific features of each security model supported by the
system, are exposed in the classes that implement this interface, for example
the UserCredentials class.

The Configuration class basically performs the task of reading the settings
concerning Aneka in the configuration file and exposing them within the
application. The programmatic use of this class is generally limited and
restricted to very simple applications and the common scenario is to have a
configuration file where the user can put its settings.

 3.3.3 Monitoring: Getting Back Results

Job submission is only a phase of grid-based application development. After
submitting jobs, we are generally interested in handling the outcomes of their
executions. Another important issue is knowing whether jobs have been
executing successfully or have failed. In other words we need to monitor the
execution of the grid application.

The AnekaApplication class exposes a set of events that user can register
with, and that provide an asynchronous feedback about the application
execution. These events are:

• WorkUnitFinished: this event is raised when the client application
receives back from the Aneka scheduler service a job which has
terminated its execution.

• WorkUnitFailed: this event is raised when the client application receives
back from the Aneka scheduler service a job which has failed, along
with some information – if available - on the nature of the error
occurred.

• WorkUnitAborted: this event is raised when the user programmatically
stops the execution of a work unit already submitted to Aneka.

• ApplicationFinished: this event is raised by the client application as soon
as the application termination condition is verified. This can be detected
automatically or with the contribution of the user.

WorkUnitFinished, WorkUnitFinished, and WorkUnitAborted are of the same
type: EventHandler<WorkUnitEventArgs<W>>. Listing 8 shows the
WorkUnitEventArgs class and the enumeration WorkUnitState.

namespace Aneka.Entity

{

 /// <summary>

 /// Class WorkUnitEventArgs. Defines the information related to change status

 /// event of a WorkUnit. It basically shows the information on the WorkUnit

 /// instance, its status, and an exception if occurred during execution.

 /// </summary>

 [Serializable]

 public class WorkUnitEventArgs : EventArgs

 {

 /// <summary>

 /// Gets the work unit instance related to the event.

 /// </summary>

 public WorkUnit WorkUnit { get { ... } }

 // constructors...

}

/// <summary>

/// Enum WorkUnitState. Defines the possible states of a WorkUnit.

/// </summary>

public enum WorkUnitState

{

 /// <summary>

 /// The work unit has not been started yet.

 /// </summary>

 Unstarted = 0,

 /// <summary>

 /// The work unit is running on some node of the grid.

 /// </summary>

 Running = 1,

 /// <summary>

 /// The work unit has been stopped.

 /// </summary>

 Stopped = 2,

 /// <summary>

 /// The work unit is suspended (Not used at the moment).

 /// </summary>

 Suspended = 3,

 /// <summary>

 /// The work unit has started. (Used in the Thread Model)

 /// </summary>

 Started = 4,

 /// <summary>

 /// The work unit has been queued.

 /// </summary>

 Queued = 5,

 /// <summary>

 /// The work unit failed.

 /// </summary>

 Failed = 6,

 /// <summary>

 /// The work unit has been rejected.

 /// </summary>

 Rejected = 7

 /// <summary>
 /// The work unit is waiting for input files to be moved on the server.

 /// </summary>

 StagingIn = 8,

 /// <summary>
 /// The work unit has completed its execution and it is waiting for its

 /// files to be moved on the client.

 /// </summary>

 StagingOut = 9,

 /// <summary>

 /// The instance has been aborted by the user.

 /// </summary>

 Aborted = 10,

 /// <summary>

 /// The instance has terminated its execution successfully and all its

 /// depending output files have been downloaded.

 /// </summary>

 Completed = 11,

 /// <summary>

 /// The instance was running and for some reason has been terminated by

 /// the infrastructure and rescheduled.

 /// </summary>

 ReScheduled = 12

 }

}

Listing 9 - Configuration class public interface and WorkUnitState
enumeration.

The WorkUnitEventArgs class provides only one property: WorkUnit. Once we

get a reference to the WorkUnit we can query its State property to get
information about the work unit status according to the values of the
enumeration WorkUnitState.

When the event WorkUnitFailed is raised the corresponding the user should
expect only the values Failed, Rejected, and Stopped. In this case it is possible
to look at the Exception property of the WorkUnit instance. This property can
be helpful in discovering the origin of the failure. There could be different
causes originating this event:

• The computing node on which the task was executed failed. In this case
Aneka will send back a WorkUnitFailed event by setting the Status
property of the WorkUnit to Failed and by setting the Exception property
to System.Exception with “Resource Failure” as message. This condition
raises the WorkUnitFailed event if and only if the ResubmitMode on the
WorkUnit instance has been set to ResubmitMode.MANUAL.

• The task execution has been rejected. This case only applies in case of
using advance reservation. Advance reservation allows clients to
reserve a future time slice for executing a work unit. This is an
advanced feature and will not be discussed in this tutorial. The only
thing important to mention is that in this case the Status property of the
WorkUnit instance will be set to Rejected.

• The task execution failed because of an exception in the user code. This
is the most common case. If the task fails because of an exception in
the user code the Status property is set to WorkUnitState.Failed and the
Exception property will contain the remote exception which generated
the failure.

Handling Properly the WorkUnitFailed Event

It is always wise to perform null value checks on the
WorkUnit and the Exception property of the WorkUnit
instance, in case of WorkUnitFailed events. Since something
has gone wrong on the remote computation node and we
are not sure about the cause, we cannot be sure that all the
data of the failure have been collected.

While we are always assured that the WorkUnit property of
the event argument is not null, but we cannot ensure this
for its Exception property.

The WorkUnitAborted event is raised only in case the user actively stops the
execution of a work unit that has been already submitted. This event is useful
when multiple software components are monitoring the activity of the
application. In this scenario one software component can stop the execution
of the work unit and the other one can get notified of this action.

In case of WorkUnitFinished the state property will then be set to Stopped.

This is the simplest case: we can then access the WorkUnit property - that in
the case of task model would be of type AnekaTask – to access all the data of
the WorkUnit and getting back the results.

The case of the ApplicationFinished event is simpler. As shown in Listing 10,
the ApplicationEventArgs class only contains one property that is the duration
of the entire execution of the application.

namespace Aneka.Entity

{

 /// <summary>

 /// Class ApplicationEventArgs. Event argument class providing information about

 /// the execution of a grid application.

 /// </summary>

 [Serializable]

 public class ApplicationEventArgs : EventArgs

 {

 /// <summary>

 /// Gets the duration of the execution of the grid application.

 /// </summary>

 public TimeSpan Duration { get { ... } }

 ...

 // constructors...

 }

}

Listing 10 - ApplicationEventArgs class public interface.

It is now possible to write the user code that will collect the results. Basically
what we need to do is to register handlers with these events and process the
data inside the event handlers. We are not interested in handling the
WorkUnitAborted event because there is only one component monitoring the
life cycle of the application. In order to show how this can be done we will
extend the previous example (See Listing 3) by adding the code to obtain the
value of the Gaussian distribution and saving it into an array. We will also
handle the case of tasks failed. Here is the list of the steps to perform:

1. Define a static Dictionary<double,double> called samples and
instantiate it at the beginning of the Main method.

2. Define a static integer field called failed and set it to 0 at the beginning
of the Main method.

// File: MyTaskDemo.cs

using Aneka.Entity;

using Aneka.Tasks;

// adding some useful namespaces

using System;

using System.Collection.Generics;

namespace Aneka.Examples.TaskDemo

{

 class MyTaskDemo

 {

 /// <summary>

 /// failed task counter

 /// </summary>

 private static int failed;

 /// <summary>

 /// Dictionary containing sampled data.

 /// </summary>

 private static Dictionary<double,double> samples;

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 samples = new Dictionary<double,double>();

failed = 0;

.....

 }

 }

}

3. For each iteration of the for loop put an entry into the dictionary
samples where the key is the value of x of the current iteration, and the
value is the constant double.NaN.

// File: MyTaskDemo.cs

using Aneka.Entity;

using Aneka.Tasks;

namespace Aneka.Examples.TaskDemo

{

 while (min <= max)

 {

 // Step 2. create a task instance

 MyTask task = new MyTask();

 task.X = min;

 // Step 3. Wrap into AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // Step 4. Submit the execution

 app.ExecuteWorkUnit(gt);

// map key to double.NaN

samples[task.X] = double.NaN;

 min += step;

 }

....

}

4. Define a static handler for the WorkUnitFinished event and register it
with the event (OnWorkUnitFinished).

5. Define a static handler for the WorkUnitFailed event and register it with
the event (OnWorkUnitFailed).

6. Define a static handler for the ApplicatioFinished event and register it
with the event (OnApplicationFinished).

// File: MyTaskDemo.cs

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

samples = new Dictionary<double,double>();

failed = 0;

AnekaApplication<AnekaTask,TaskManager> app

= Setup(args);

// registering with the WorkUnitFinished

// event

app.WorkUnitFinished +=

 new EventHandler<WorkUnitEventArgs<AnekaTask>>

 (OnWorkUnitFinished);

// registering with the WorkUnitFailed

// event

app.WorkUnitFailed +=

 new EventHandler<WorkUnitEventArgs<AnekaTask>>

 (OnWorkUnitFailed);

// registering with the ApplicationFinished

// event

app.ApplicationFinished +=

 new EventHandler<ApplicationEventArgs>

 (OnApplicationFinished);

.....

}

....

}

}

7. Inside the method OnWorkUnitFinished defined write the code required
to unwrap the MyTask instance from the WorkUnit property and to
replace the double.NaN value with the value of the Result property, for
the corresponding value of X.

// File: MyTaskDemo.cs

 /// <summary>

 /// Handles the WorkUnitFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

/// <param name="args">event arguments</param>

 public static void OnWorkUnitFinished(object sender,

 WorkUnitEventArgs args)

 {

MyTask task = args.WorkUnit.UserTask as MyTask;

lock(samples)

{

samples[task.X] = task.Result;

}

}

....

8. Inside the method OnWorkUnitFailed write the code to increment the
failed static field of one unit.

// File: MyTaskDemo.cs

 /// <summary>

 /// Handles the WorkUnitFailed event.

 /// </summary>

 /// <param name="sender">event source</param>

/// <param name="args">event arguments</param>

 public static void OnWorkUnitFailed(object sender,

 WorkUnitEventArgs<AnekaTask> args)

 {

Threading.Interlock.Increment(failed);

}

....

9. Inside the method OnApplicationFinished write the code for dumping
the data of the dictionary and the number of task failed.

// File: MyTaskDemo.cs

 /// <summary>

 /// Handles the ApplicationFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>
public static void OnApplicationFinished(object sender,

 ApplicationEventArgs args)

 {

// we do not need to lock anymore

// the samples dictionary because the

// asynchronous events are finished then

// there is no risk of races.

Console.WriteLine("Results");

foreach(KeyValuePair<double,double> sample in samples)

{

Console.WriteLine("{0}\t{1}",
 sample.Key,
 sample.Value);

}

Console.WriteLine("Tasks Failed: " + failed);

}

Writing the code for monitoring the application has been very straightforward.
The only aspect that worth a further discussion is the synchronization
management.

As previously said events are asynchronous because they are generated from
the execution stack of another process. Since we cannot make any
assumption on the timing of these events we cannot be sure they will not
overlap. Indeed, it is frequent that multiple event calls to the
WorkUnitFinished are run concurrently. Since these calls operate on the same
data structure it is necessary to lock before invoking any operation on it. The
same happens for the increment of the failed field. Conversely, while
executing the handlers registered with the ApplicationFinished event, there
are no concurrent calls then the synchronization code is not required.

We can observe that the synchronization strategy presented in this sample is
really trivial. For more complex scenarios this infrastructure cannot be enough
and a more sophisticated strategy involving semaphores can be required.

 3.3.4 Application Control and Task Resubmission

As we have already said, The AnekaApplication class provides methods for
controlling its the execution on Aneka. We already have seen how to submit
tasks by using two different strategies. And how these strategies affect the

evaluation of the stop condition of the grid application. But we do not have
shown how the user can programmatically stop the execution of the
application. This is accomplished by the AnekaApplication.StopExecution()
method.

By calling StopExecution() the user terminates the execution of the grid
application on Aneka and aborts all the tasks still running belonging to the
application. This method represents the only way for the user ensure the
termination of the AnekaApplication when the SingleSubmission property is
set to false. Setting the SingleSubmission property to false is not really rare,
indeed it is requirement when the user wants to resubmit tasks that have
failed their execution and this implies the responsibility of communicating to
the AnekaApplication instance when the application is terminated. In this
case, it is necessary to keep trace of the execution of tasks in smarter way
than the one presented in the previous section. In this section we will show
how to handle task resubmission and programmatically control the
termination of the grid application by using the StopExecution() method.

Task resubmission is simply performing by collecting the information of the
task failed by registering an handler for the WorkUnitFailed event and, after
having collected all the information about the failed task, creating a new
instance of the AnekaTask class and resubmit it by calling the
AnekaApplication.ExecuteWorkUnit(...) method. This action actually submit a
new task with the same configuration of the failed one.

As pointed out in section 3.3.2, Aneka gives you the flexibility to control the
task resubmission behavior by the ResubmitMode property in the
Configuration class. Listing 11 shows all the possible values of ResubmitMode
enumeration.

namespace Aneka.Entity

{

/// <summary>

/// Enum ResubmitMode. Enumerates the strategies available for handling work

 /// unit resubmission on failure.

/// </summary>

public enum ResubmitMode

{

 /// <summary>

 /// Aneka will automatically handle task resubmission.

 /// </summary>

 AUTO = 0,

 /// <summary>

 /// Aneka will not handle task resubmission on node failure and will fire

 /// the WorkUnitFailed event.

 /// </summary>

 MANUAL = 1,

 /// <summary>

 /// Inherit the value defined at configuration level.

 /// </summary>

 INHERIT = 2,

 }

}

Listing 11 ResubmitMode enumeration.

The default configuration for any AnekaApplication instance is
ResubmitMode.AUTO. As previously said this means that Aneka will
automatically handle resubmission on task failure. It is also possible two
specify the ResubmitMode.MANUAL, in this case Aneka will not handle task
resubmission and will fire the event WorkUnitFailed for each work unit that
does not complete successfully. It is important to notice that only in case
ResubmitMode is set to MANUAL the client will be notified of task failure.

NOTE: It is important to notice that the value of ResubmitMode
only influences the behavior of Aneka when a computing
node fails. A work unit that fails because of the abnormal
termination of the user task (such as an Exception
originating from the work unit user code) will always raise
the WorkUnitFailed event, without any regard to the value of
ResubmitMode. In fact, there is no point in try to resubmit
the execution of the user code without any action, because
that code will probably always fail.

These are the only two values allowed for the ResubmitMode property in the
Configuration class. There is, however, a third value which is
ResumitMode.INHERIT. Such option is the default one for the ResubmitMode
property of WorkUnit class and tells the work unit instance to inherit the
configuration setting from the Configuration instance of the application.

The possibility of having a general task resubmission behavior and of tuning
this behavior for the single tasks allows a great degree of flexibility in defining
custom resubmission strategies. For example it is possible to select the
manual resubmission mode only for critical tasks and let Aneka take care
about all the other tasks resubmission. This strategy can be useful when
timing is an important issue and when there are dependencies among tasks
handled by the client application. In this tutorial we will only show how to
handle the manual resubmission of all the tasks.

Manual task resubmission requires the SingleSubmission set to false. Given
that, when handling task resubmission on the client side we first have to
define a termination condition for the grid application. It is, actually, our
responsibility to call the AnekaApplication.StopExecution() method to
communicate to the AnekaApplication class to stop its execution. The general

rule of thumb is the following:

1. Identify a termination condition for your application.

2. Write the handler for the WorkUnitFinished event.

3. Inside the code of the handler check the termination condition and
eventually call AnekaApplication.Stop().

Things become more complicate when we have to handle task resubmission,
in this case it could possible that we have to modify some parameters which
compose the termination condition.

Now we will extend the previous example in order to handle the manual
resubmission and we will show how the problem can be easily solved when
we have a fixed number of task to execute. We will proceed by devising two
strategies:

• Strategy 1: Log Only. This strategy simply logs the failure of the task
makes and updates the termination condition.

• Strategy 2: Full Care. This strategy resubmits the failed tasks until all
the tasks have completed successfully.

Since we have a fixed number of tasks we can easily trace the execution of
tasks by using two integer variables: completed and total. The first one will be
incremented by one unit at each task completion, while the second one will
store the total number of task that we expect to complete. The algorithm
used to detect the application termination condition is then really
straightforward:

1. The application terminates its execution when (total == completed)
holds true.

2. Before starting to tasks submission set current to 0, and total to the
number of tasks composing out application.

3. Inside the WorkUnitFinished event handler:

1. increment by one unit the value of completed;

2. check whether total is equal to completed;

3. if the two values are equal call AnekaApplication.StopExecution();

We can finally register an handler with the ApplicatioFinished event to post
process all the tasks.

Implementing Strategy 1: Log Only.

In this case, since we do not need to resubmit the tasks the number of total
tasks that we expect to complete decreases by one unit at each task failure.
Then in this strategy we have to properly handle this condition into the
WorkUnitFailed event handler. The algorithm needs to be modified by
introducing a step 4 as the following:

4. Inside the WorkUnitFailed event handler:

1. decrement by one unit the value of total;

2. check whether total is equal to completed;

3. if the two values are equal call AnekaApplication.StopExecution();

4. eventually log the failure of the task (failed field).

We can observe that since we are modifying the same variables in two
different event handlers we should use a single synchronization object that is
expressively added to the application by defining a static object field
synchLock and initializing it (just call new object()) into the Main method,
before submitting the tasks. Inside the two event handlers wrap all the code
into the a lock(synchLock) { ... } block. This practice instead of using
Interlock.Increment(...) and Interlock.Decrement(...) ensures that change to
the counters and the check for the termination condition are executed
atomically in each event handler.

Implementing Strategy 2: Full Care.

In this case, we do not have to make any change to the general algorithm but
we have to handle the task resubmission on the client side. This can be easily
done inside the WorkUnitFailed event handler. It is just necessary to:

1. create a new instance of the AnekaTask class;

2. configure it with the UserTask property of the failed task;

3. call the AnekaApplication.ExecuteWorkUnit(...) method by passing to it
the newly created AnekaTask instance.

We just want to observe that either the WorkUnit property of the
WorkUnitStatusArgs instance or the UsertTask property of the WorkUnit
instance can be null. In this case we need to implement a local cache of all
the submitted tasks in order to be able to resubmit the tasks.

Listing 12 shows the complete application with an implementation of both the
two strategies.

// File: MyTaskDemo.cs

using System;

using System.Threading;

using System.Collections.Generic;

using Aneka.Entity;

using Aneka.Security;

using Aneka.Tasks;

namespace Aneka.Examples.TaskDemo

{

 /// <summary>

 /// Class MyTask. Simple task function wrapping

 /// the Gaussian normal distribution. It computes

 /// the value of a given point.

 /// </summary>

 [Serializable]

 public class MyTask : ITask

 {

 /// <summary>

 /// value where to calculate the Gaussian normal distribution.

 /// </summary>

 private double x;

 /// <summary>

 /// Gets, sets the value where to calculate the Gaussian normal distribution.

 /// </summary>

 public double X { get { return this.x; } set { this.x = value; } }

 /// <summary>

 /// value where to calculate the Gaussian normal distribution.

 /// </summary>

 private double result;

 /// <summary>

 /// Gets, sets the value where to calculate the Gaussian normal distribution.

 /// </summary>

 public double Result

 {

get { return this.result; }

set { this.result = value; }

 }

 /// <summary>

 /// Creates an instance of MyTask.

 /// </summary>

 public MyTask() {}

 #region ITask Members

 /// <summary>

 /// Evaluate the Gaussian normal distribution

 /// for the given value of x.

 /// </summary>

 public void Execute()

 {

 this.result = (1 / (Math.Sqrt(2* Math.PI))) *

 Math.Exp(- (this.x * this.x) / 2);

 }

 #endregion

 }

 /// <summary>

 /// Class MyTaskDemo. Simple Driver application that shows how to create tasks

 /// and submit them to the grid, getting back the results and handle task

 /// resubmission along with the proper synchronization.

 /// </summary>

 class MyTaskDemo

 {

 /// <summary>

 /// failed task counter

 /// </summary>

 private static int failed;

 /// <summary>

 /// completed task counter

 /// </summary>

 private static int completed;

 /// <summary>

 /// total number of tasks submitted

 /// </summary>

 private static int total;

 /// <summary>

 /// Dictionary containing sampled data

 /// </summary>

 private static Dictionary<double,double> samples;

 /// <summary>

 /// synchronization object

 /// </summary>

 private static object synchLock;

 /// <summary>

 /// sempahore used to wait for application termination

 /// </summary>

 private static AutoResetEvent semaphore;

 /// <summary>

 /// grid application instance

 /// </summary>

 private static AnekaApplication<AnekaTask,TaskManager> app;

 /// <summary>

 /// boolean flag indicating which task failure management strategy to use.

 /// If true the Log Only strategy will be applied, if false the Full Care

 /// strategy will be applied.

 /// </summary>

 private static bool bLogOnly = false;

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

Console.WriteLine("Setting Up Grid Application..");

app = Setup(args);

 // create task instances and wrap them

 // into AnekaTask instances

 double step = 0.01;

 double min = -2.0;

 double max = 2.0;

// initialize trace variables.

total = 400; // (max – min) / step

completed = 0;

failed = 0;

samples = new Dictionary<double,double>();

// initialize synchronization data.

synchLock = new object();

semaphore = new AutoResetEvent(false);

// attach events to the grid application

AttachEvents(app);

Console.WriteLine("Submitting {0} tasks...", total);

 while (min <= max)

 {

 // create a task instance

 MyTask task = new MyTask();

 task.X = min;

samples.Add(task.X, double.NaN);

 // wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // submit the execution

 app.ExecuteWorkUnit(gt);

 min += step;

 }

Console.WriteLine("Waiting for termination...");

semaphore.WaitOne();

Console.WriteLine("Application finished.");

 }

 #region Helper Methods

 /// <summary>

 /// AnekaApplication Setup helper method. Creates and

 /// configures the AnekaApplication instance.

 /// </summary>

 /// <param name="args">program arguments</param>

 private static AnekaApplication<AnekaTask,TaskManager> Setup(string[] args)

 {

 Configuration conf = Configuration.GetConfiguration();

// ensure that SingleSubmission is set to false

// and that ResubmitMode to MANUAL.

conf.SingleSubmission = false;

conf.ResubmitMode = ResubmitMode.MANUAL;

conf.UserCredential = new UserCredential(user, pass);

AnekaApplication<AnekaTask,TaskManager> app =

new AnekaApplication<AnekaTask,TaskManager>"MyTaskDemo", conf);

// ensure that SingleSubmission is set to false

if (args.Length == 1)

{

bLogOnly = (args[0] == "LogOnly" ? true : false);

}

return app;

 }

 /// <summary>

 /// Attaches the events to the given instance of the AnekaApplication class.

 /// </summary>

 /// <param name="app">grid application</param>

 private static void AttachEvents(AnekaApplication<AnekaTask,TaskManager> app)

 {

// registering with the WorkUnitFinished event

app.WorkUnitFinished +=

 new EventHandler<WorkUnitEventArgs<AnekaTask>>(OnWorkUnitFinished);

// registering with the WorkUnitFinished event

app.WorkUnitFailed +=

 new EventHandler<WorkUnitEventArgs<AnekaTask>>(OnWorkUnitFailed);

// registering with the ApplicationFinished event

app.ApplicationFinished +=

 new EventHandler<ApplicationEventArgs>(OnApplicationFinished);

 }

 /// <summary>

 /// Dumps the results to the console along with some information about the

 /// task failed and the tasks used.

 /// </summary>

 private static void ShowResults()

 {

// we do not need to lock anymore the samples dictionary because the

// asynchronous events are finished then there is no risk of races.

Console.WriteLine("Results");

foreach(KeyValuePair<double,double> sample in samples)

{

 Console.WriteLine("{0}\t{1}", sample.Key, sample.Value);
}

Console.WriteLine("Tasks Failed: " + failed);

string strategy = bLogOnly ? "Log Only" : "Full Care";

Console.WriteLine("Strategy Used: " + strategy);

 }

 #endregion

 #region Event Handler Methods

 /// <summary>

 /// Handles the WorkUnitFailed event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnWorkUnitFailed(object sender,

 WorkUnitEventArgs<AnekaTask> args)

 {

if (bLogOnly == true)

{

// Log Only strategy: we have to simply record the failure and

// decrease the number of total task by one unit.

lock(synchLock)

{

 total = total - 1;

 // was this the last task?

 if (total == completed)

 {

 app.StopExecution();

 }

 failed = failed + 1;

}

}

else

{

// Full Care strategy: we have to resubmit the task. We can do

// this only if we have enough information to resubmit it

// otherwise we switch to the LogOnly strategy for this task.

AnekaTask submitted = args.WorkUnit;

if ((submitted != null) && (submitted.UserTask != null))

{

 MyTask task = submitted.UserTask as MyTask;

 AnekaTask gt = new AnekaTask(task);

 app.ExecuteWorkUnit(gt);

}

else

{

 // oops we have to use Log Only.

 lock(synchLock)

 {

 total = total - 1;

 // was this the last task?

 if (total == completed)

 {

app.StopExecution();

 }

 failed = failed + 1;

 }

}

}

 }

 /// <summary>

 /// Handles the WorkUnitFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnWorkUnitFinished (object sender,

 WorkUnitEventArgs<AnekaTask> args)

 {

// unwrap the task data

MyTask task = args.WorkUnit.UserTask as MyTask;

lock(synchLock)

{

 // collect the result

 samples[task.X] = task.Result;

 // increment the counter

 completed = completed + 1;

 // was this the last?

 if (total == completed)

 {

 app.StopExecution();

 }

}

 }

 /// <summary>

 /// Handles the ApplicationFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnApplicationFinished(object sender,
 ApplicationEventArgs args)

 {

// display results

ShowResults();

// release the semaphore

// in this way the main thread can terminate

semaphore.Set();

 }

 #endregion

 }

}

Listing 12 - Task creation and submission.

We can notice that example uses an AutoReset event object to make the main

application thread wait until all the tasks have been returned by Aneka and
the results have been showed to the console. If we do not make the main
thread wait the program terminates before all the tasks get back. This is due
to the fact that when then main application thread reaches the end of its
scope and terminates it sends an abort message to all dependent threads.

In real application this technique is really common but there could be cases in
which it is not necessary.

Finally a possible improvement of this application is the introduction of a local
cache for keeping track of the tasks more precisely.

4. Conclusions
In this tutorial we have introduced the Task Execution Model implemented in
Aneka for running a set of independent tasks. Within the Task Execution Model
a task is specific work unit that can be executed on a remote node. The Task
Execution Model is the simplest and intuitive execution model in Aneka. It is
suitable to execute jobs of legacy code or managed .NET code.

In order to define a specific task we need to create a type implementing the
ITask interface. This interface exposes only one method that is Execute which
is the method called on the remote node to carry out the execution of the
task. In order to be able to submit tasks to Aneka, the type defined need to be
serializable, and all the information it needs for its execution has to be
bundled with it (and eventually be serializable as well). Aneka will take care of
unpacking the grid on the remote node, executing it, repack it, and send it
back to the client.

This tutorial has covered the following arguments:

• General notions about the Task Model.

• How to define a class that implements the ITask interface.

• How to create and configure the AnekaTask instance with a user defined
task.

• How to create an AnekaApplication instance and configure it with Task
Model.

• How to submit tasks for execution.

• How to monitor the life cycle of a Task Model application.

• How to handle task resubmission.

All these features have been demonstrated by developing the TaskDemo
application from scratch.

This tutorial does not fully cover what can be done with the Task Model. In
particular this tutorial did not explained how to use input, output, and shared
files with the application and the tasks. For a more detailed information about
this and other aspects the user can have a look at the APIs documentation.

	1. Prerequisites
	2. Introduction
	3. Task Model
	3.1 What are Tasks?
	3.2 Working with Tasks
	3.3 AnekaApplication Configuration and Management
	 3.3.1 Getting Information from AnekaApplication
	 3.3.2 Application Configuration
	 3.3.3 Monitoring: Getting Back Results
	 3.3.4 Application Control and Task Resubmission

	4. Conclusions

