
MANJRASOFT PTY LTD

Using the Design Explorer
Aneka 5.0

Manjrasoft

This tutorial describes the Aneka Design Explorer and explains how to quickly prototype parameter
sweep applications that runs on the Aneka Cloud. It illustrates the features of the user interface en-
vironment shipped with the Design Explorer and provides a step by step guide on how to compose
applications and monitor their execution on the Aneka Cloud. After having read this tutorial the us-
ers will be able to develop their own parameter sweep applications with the Design Explorer.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd.

Table of Contents

1 Prerequisites ... 1

2 Introduction .. 1

3 Parameter Sweep Applications .. 2

3.1 Definition and Characteristics ... 2

3.2 Example ... 2

3.3 Parameter Sweep Support within Aneka ... 4

4 Design Explorer .. 5

4.1 Creating a Parameter Sweep Application .. 6

4.1.1 Application Information ... 7

4.1.2 Parameter Definition .. 8

4.1.3 Configuring Shared Files ... 10

4.1.4 Input and Output Files ... 11

4.1.5 Task Template Commands ... 13

4.1.6 Finalizing the Task Template.. 14

4.2 PSM File Structure .. 15

4.3 Managing and Executing Parameter Sweep Applications.............................. 18

4.3.1 Project Window Layout .. 19

4.3.2 Editing the Task Template ... 20

4.3.3 Connecting to Aneka .. 22

4.3.4 Running the Project .. 23

4.3.5 Jobs Visualization ... 24

4.3.6 Statistical Data .. 27

4.3.7 Analyzing the Console .. 28

5 Example ... 32

5.1 BLAST ... 32

5.1.1 BLAST Distribution .. 32

5.1.2 Executing a BLAST Query .. 32

5.1.3 Parallelizing a BLAST Task ... 33

5.2 Creating the Parameter Sweep Application for BLAST 34

5.2.1 Identifying Parameters ... 34

5.2.2 Selecting Shared Files .. 34

5.2.3 Identifiying Input and Output Files ... 35

5.2.4 Creating the Task Commands ... 35

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd.

5.2.5 Using the Wizard and Creating the .psm and .wbch Files 35

5.3 Running the BLAST Project .. 39

5.4 Extending the BLAST Example .. 41

6 Conclusions ... 42

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 1

1 Prerequisites

In order to fully understand this tutorial the user should be familiar with the general con-

cepts of Grid/Cloud Computing and the XML language.

The practical part of the tutorial requires a working installation of Aneka. The common

Aneka distribution contains the Design Explorer.

2 Introduction

The Design Explorer is an integrated environment that allows user to quickly prototype

distributed applications based on the Parameter Sweep model. Users can easily identify

the logic and the data of the distributed application by using a sequence of steps that

guides them in composing the distributed application. In this tutorial we will:

• Characterize the nature of the Parameter Sweep applications

• Illustrate the features of the Design Explorer

• Provide a step by step guide on how to create an application with the Design Ex-

plorer

Figure 1 - Application Scenario.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 2

Figure 1 describes the common scenario in which the Design Explorer is used. A user inter-

act with the user interface provided with the Design Explorer, composes the parameter

sweep application and then submits the collection of jobs that represent the application

to the Aneka Cloud. By using the same interface the user can control the execution of the

application and control the status of the jobs.

The Design Explorer can also work in stand-alone mode. In this case it is only possible to

compose the parameter sweep application. For executing it, it is necessary a live connec-

tion to the Aneka Cloud.

3 Parameter Sweep Applications

3.1 Definition and Characteristics

A parameter sweep application is a kind of distributed application that is defined by a

template task characterized by a set of configurable parameters. The template task iden-

tifies the set of operations that define the computation. The configurable parameters rep-

resent the way in which the template task is specialized. Each of these parameters could

have a different domain and users want to explore the behaviour of the template task for

all the possible values of the parameters. The exploration of the parameter values gener-

ates a variable number of tasks representing the jobs of the parameter sweep application.

Every single job represents an executable entity with a specific parameter setting.

Parameter sweep applications are quite common in different areas such as scientific com-

puting and finance. They represent the most intuitive way to provide distributed support

for legacy applications designed to run on a single machine.

For example, in the field of scientific computing the project can be1 considered as a kind

of parameter sweep application. SETI (Search for Extra Terrestrial Intelligence) @home is

a project aimed at detecting intelligent life outside Earth by analysing the radio frequency

signals coming from the space. The range of signals to explore, the observation time, and

the portion of the sky covered make up a huge amount of data to analyse. This data is di-

vided into chunks that can be analysed in parallel by the same application. In this case the

template task is represented the by the application and the configurable parameters iden-

tify the specific chunk of data to analyse.

In general there exist a large number of legacy applications that are controlled by a set of

parameters. All these applications, can take advantage of the parameter sweep model in

order to distribute the execution and explore the entire parameters domain in a more ef-

fective way.

3.2 Example

Figure 2 describes the process of generating the jobs from a template task that is charac-

terized with parameters. A common template task can be composed by the following ele-

ments:

1More information can be found at: http://setiathome.berkeley.edu/

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 3

• One or more executable applications that define the sequence of operations that

are performed by the template task. Parameters representing the variable ele-

ments in the template tasks that specialize its behaviour. The parameters can

characterize different elements such as: command switches, input and output file

names, and also file content.

• Input files. They can be data files, configuration files, or executable applications.

• Output files. They generally are the outcome of the computation of the template

task as a whole.

Figure 2 - Job Generation from a Template Task.

• Parameters representing the variable elements in the template tasks that special-

ize its behaviour. The parameters can characterize different elements such as:

command switches, input and output file names, and also file content.

• Input files. They can be data files, configuration files, or executable applications.

• Output files. They generally are the outcome of the computation of the template

task as a whole.

The number and the specific domains of the parameters determine the number of jobs

that compose the parameter sweep application. In the example shown in Figure 2, a sim-

ple data analysis application is considered. The template task runs two console applica-

tions in sequence and it is controlled by three different parameters. It takes three input

files and produces one output file. The output of the task is the result of the chained exe-

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 4

cution of analyze.exe and filter.exe as described in the template task. As shown in the

figure, analyze.exe takes as input a command switch identified by the $m parameter, the

file input_$n.dat and produces the output temp_$m_$n.dat. The filter application takes as

input the command switch $m, the temp_$m_$n.dat file previously generated and a ran-

dom seed number identified by the $seed parameter. It produces the output files out-

put_$m_$n.dat representing the outcome of the task.

The scenario that this parameter sweep application explores is identified by all the possi-

ble combinations of the the two parameters $n and $m2. The former identifies the specif-

ic chunk of data processed while the latter represents the specific processing mode used.

The set of all the combinations can be expressed as:

C: [0,...,N] x [m1, m2, mx]

and generates a number of task that is equal to 3 x (N+1). For each of the points that be-

long to the scenario C a specific job is generated where the occurrences of all the param-

eters defining the scenario are substituted by the corresponding parameter values. In the

example considered, there also exists a random parameter $seed that does not belong to

the scenario but it is simply generated at run time. These jobs are then executed and the

results are collected.

3.3 Parameter Sweep Support within Aneka

Different distributed infrastructures provide different run time support for parameter

sweep applications. For this reason, while parameter sweep applications are a general

model there exist no standard languages or formats to represent the template task and

the parameters. The specific support provided by the distributed infrastructure on top of

which parameter sweep applications are run determines the set of operations available to

the end user to compose the template task.

In the case of Aneka the parameter sweep applications are expressed by using the Param-

eter Sweep Model (PSM) that is modelled on top of the Task Programming Model3. The

task programming model structures a distributed application as a collection of independ-

ent tasks that can be executed in any order. A task is a generic execution unit that can

have input and output files, these files are automatically moved in and out of the Aneka

cloud when needed.

The Aneka PSM APIs provide the logic for creating the sequence of task instances (jobs)

from a template task given the parameters domains. They automatically submit these

tasks to the Aneka Cloud and collect back their results that are then presented to the user

through the Design Explorer. This particular design strongly influences the set of opera-

tions that are available to the user: for example it is not necessary, as happens in other

parameter sweep models, to specify data movement in the task template but input and

2The random parameter $seed is not considered in the scenario since it does not define a dimension
of the problem but simply represents an random runtime value used to initialize the filter.exe
application.

3For more details about the Task Programming Model please see the Tutorial: Developing Task Model
Applications in the Aneka distribution or available from the Manjrasoft website.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 5

output files are automatically moved by Aneka. Moreover, the Aneka PSM APIs provide a

set of ready to use commands that can be used to compose the template task of the appli-

cation. These are:

• Copy command: makes a copy of a file on the remote node

• Delete command: deletes a file on the remote node

• Execute command: executes a command on the remote node

• Substitute command: substitutes the occurrences of the parameters with their run

time values into a file

• Environment command: sets a collection of environment variables in the shell used

to execute the template task on the remote node

These commands are specific GridTask instances and any other used defined GridTask

types can be used to define a template task of parameter sweep applications.

4 Design Explorer

The Design Explorer is integrated environment for quickly prototyping Parameter Sweep

applications, controlling and monitoring their execution on Aneka Clouds. It is an environ-

ment where user can create, open, and save a project representing their Parameter

Sweep applications. By using a simple step by step wizard users can visually prototype the

structure of the template task that will be used to generate all the jobs run on the Aneka

Cloud. The template can be saved into a project and run within the environment itself,

through which it is possible to monitor its execution and collect some useful statistics.

NOTE: The support provided at programming level for Parameter Sweep

Applications is more powerful and advanced then the one provided

through the Design Explorer. The template task defining prototype of jobs

is modeled as an instance of the CompositeTask class that is character-

ized by a list of GridTask instances executed in sequence. Hence, by pro-

gram any GridTask inherited class can be used to compose the task tem-

plate. By using the Design Explorer it is only possible to compose the tasks

by using the five commands listed above, for which a full GUI support has

been provided.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 6

Figure 3 - Design Explorer User Interface

The Aneka Design Explorer is located in the bin directory of the Aneka installation ([Pro-

grams Folder]\Manjrasoft\[Aneka Version]\bin) and it is accessible from the Start → All

Programs → Manjrasoft → [Aneka Version] → Design Explorer menu item.Figure 3 shows

the user interface of the Design Explorer. The menu provides easy access to all the fea-

tures of the environment:

• File menu: provides access to the project wide operations such as create, open,

save (and save under a different name) a project

• Edit menu: provides access to the options panel where the user can set the creden-

tial information required to access the Aneka Cloud

• Help menu: provides access to this documentation and a brief information dialog

box about the Design Explorer itself

The user interface also features a tool bar that contains the most commonly performed

operations (new project, open project, save project, and help). The remaining part of the

window constitutes the workspace where the project windows are hosted.

4.1 Creating a Parameter Sweep Application

In order to create a new Parameter Sweep application it is necessary to create a new pro-

ject. This can be done by clicking the leftmost icon in the toolbar representing a blank

sheet or selecting the File →-> New... menu item.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 7

4.1.1 Application Information

Figure 4 shows the first page of the Aneka Job Wizard that is activated by the previous op-

eration. In this page the user is requested to enter some general details of the application

being created such as a name, a description, and the workspace directory.

Figure 4 - Aneka Job Wizard: Application Details.

On the left side of the wizard it is possible to see all the steps that will be covered in or-

der to define the task template of the Parameter sweep application. The bottom area of

the wizard contains the navigation controls that allow users to move back and forward

through the pages of the wizard. It is important to notice that the wizard has an incre-

mental configuration. This means that only the pages that have been successfully validat-

ed for what concerns the user input can be accessed and passed over. Once a page is suc-

cessfully validated or accessed its corresponding name on the left side of the wizard has a

blue color and it is possible to directly access to it by clicking on it.

Besides the common details of the application, such as Name, Description, and Work-

space, it is possible to specify some Quality of Service parameters for the execution. This

is done by activating the Enable QoS Settings check box, which will made accessible the

QoS Requirements parameters. The user can specify a Deadline and a Budget for the ap-

plication and select the Strategy that will be used to schedule tasks by Aneka. At the mo-

ment three different strategies are available:

• None: this strategy tries to meet the given deadline and uses the selected budget

to execute tasks.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 8

• Cost Optimization: this strategy minimizes the budget spent by selecting cheaper

resources first while executing the tasks within the deadline.

• Time Optimization: this strategy tries to complete the application as fast as possi-

ble by eventually using the entire budget available.

These constraints will guide the Aneka in scheduling the application on a best effort basis.

The ability of Aneka to complete the application in time with the given budget is strongly

influenced by the installation settings of Aneka.

The wizard will perform a few checks on the information entered by the user while press-

ing the Next button. More precisely, it will check whether the user has entered a valid and

existing workspace directory, a valid value for the budget, and a feasible value for the

deadline that has to be a further date than the current date.

4.1.2 Parameter Definition

Once the user has successfully entered the detail of the application can press the Next

button and move to the Parameters page where he/she can define all the parameters that

control the application.

NOTE: The constraints specified by the user will NOT ensure that the ap-

plication will be completed within the given deadline. Obviously, there

are physical limitations that cannot be neglected. For example, if there

are other applications running and the Aneka installation has not been

configured to support dynamic provisioning, the execution of the appli-

cation with QoS will be constrained by the number of existing physical

resources that will be shared among all the running applications. To en-

sure that the execution of the application will happen the under the

specified QoS parameters it is necessary to install the dynamic provision-

ing service, thus allowing the Aneka scheduler to require as many re-

sources as needed to complete the application in time and within the

specified budget.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 9

Figure 5 - Aneka Job Wizard: Parameter Definition.

Figure 5 shows the Parameters page. It shows the list of parameters currently defined for

the application. A parameter is defined by three elements:

• Name: represents the name of the parameter that is used to identify it in the task

template.

• Type: defines the type of parameter.

• Value: identifies the value or the values that the parameter can have according to

its definition.

By using the Add, Delete, and Clear buttons the user can add a new parameter, delete the

ones currently selected or all the parameters. The Design Explorer allows defining four

different types of parameters:

• Single: represents a parameter that can assume one single value. The underlying

type of the parameter is string.

• Random: represents a parameter that can assume a random value within a range

limited by a lower and an upper bound. The parameter is a real number.

• Range: represents a parameter that can assume a discrete set of values within a

limited range and that are generated by starting from the lower bound and adding

a step. The parameter is an integer number.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 10

• Enum: represents a parameter that can assume a discrete set of values that are de-

fined by the user. The underlying type of the parameter is string.

For all the parameters described above a name is mandatory while the user can enter an

additional comment that specifies the role of the parameter.

Figure 6 - Aneka Job Wizard: New and Edit Parameter Modes.

Figure 6 shows the dialog used to add or edit the properties of a parameter. This dialog

shows up if the user presses the Add button (New mode) or clicks on the row header of

one of the existing parameters shown in the list (Edit mode). An interesting option is the

Keep open flag that is visible only in the new mode. This feature, when selected, allows

adding more than one parameter by keeping the dialog open after pressing the Add but-

ton. The Add or Update buttons also verify that the data entered by the user is valid.

4.1.3 Configuring Shared Files

The template task is generally composed by a sequence of operations. Some of these op-

erations can be the execution of console commands or legacy applications. In this case

they are most likely to be the same for all the job instances generated from the template

task.

The Design Explorer provides the facility of specifying a collection of files that can of dif-

ferent nature (executable, data files, scripts, etc.) and that are required for executing

every job instance. For example they can represent a database file, the legacy application

of an execution command, or something else. These files are automatically transferred by

the infrastructure in a transparent manner and made available on the remote node for the

job instance. Figure 7 shows the Shared Files page. In this page user can select files locat-

ed in file system reachable from the local machine by pressing the Browse button. Once

the user has selected a file from the operating system the the Path and Virtual Path prop-

erties are automatically set. While the path represents the location of the file on the local

file system, the virtual path represents the location of the file on the remote note with

respect to the execution directory of the task. If needed users can provide a different

name for the file, but in the general case the value automatically inferred by the wizard is

the one needed.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 11

Figure 7 - Aneka Job Wizard: Shared Files Page.

Once the user has entered the proper details for the file, he or she can add it to the list of

shared files by pressing the Add button. By checking the Check whether the file exists op-

tion before adding, a check on the existence of the file is done and an informative box will

pop up if the file does not exist.

By selecting the items in the list it is possible to delete them. In order to update the con-

tent of one element it is sufficient to enter its Path property into the edit field and then

press the Add button. The wizard will automatically look for a copy of the item in the list

and asking you whether you want to update the list in the value instead of adding a new

element. It is not possible to add files with the same value of the Path property or the

same value of the Virtual Path property.

4.1.4 Input and Output Files

The next two steps allow users to specify input and output files for each of the job in-

stances. Differently from the shared files, input and output files can be specialized with

NOTE: If there is no necessity to change the value of the Virtual Path property,

it is better to let it compute by the wizard. This operation happens only if the

user leaves the field empty or when he or she selects the file from the local file

system. The property is not updated when the user manually changes or edits

the content of the path property. If the user edits manually the Virtual Path

property it is important to provide a simple file name and not a path infor-

mation.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 12

parameters. This means that the real name of the file is generated and checked at

runtime by the PSM engine.

In order to quickly compose the name of the file (input and output) at the top of the two

pages there is a combo box followed by a list that allows users to select the specific pa-

rameter that they want to pick in order to compose the file name. Once selected the pa-

rameter, the wizard will automatically generate a placeholder for the parameter that will

be replaced at runtime by the parameter value. The placeholder takes the form ($parame-

ter_name) and it is inserted at the current location of the cursor in the Input/Output file

text box.

It is possible to have three different views for the parameters:

• All parameters: shows all the available parameters.

• User parameters: shows only the parameters defined by the user in the task tem-

plate.

• Special parameters: shows only the system parameters that are available by de-

fault for each job instance. At the moment only the Task Id (Job identifier) param-

eter is available in this list. Special parameters are characterized by a leading $ in

the parameter name that makes them reserved words.

The first option shows both users and special parameters.

Once the file name is composed it can be added to the list of input/output files by press-

ing the Add button. The file name will be added to the list and checked for its name in

order to verify that any parameter placeholder typed by hand is in the correct form. The

valid column of the list alerts the user about possibly wrong file names. Once the user has

entered all the files, by pressing the Next all the files are checked and an error message

box is displayed for those that are not valid. Figure 8 shows the Input and Output files

pages.

Figure 8 - Aneka Job Wizard: Input and Output Files pages.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 13

4.1.5 Task Template Commands

The final step for defining a task template is specifying the sequence of operations that

characterize will be executed on the remote node for each of the job instances. This is

the last step because the sequence of commands can make use of all the previous ele-

ments: parameters, shared, input, and output files.

Figure 9 shows Commands page. The users can select among five different ready to use

commands:

• Copy command (CPY): this command completely executes on the remote node and

copies a file to another file under a different name but always on the same node.

Other implementations of the parameter sweep model use the copy command to

move files from the local client machine to the remote node. With Aneka this task

is transparently done and there is no need to do that explicitly in the task tem-

plate.

• Delete command (DEL): deletes a file on the remote node.

• Execute command (EXE): executes a shell command or console application on the

remote node.

• Substitute command (SUB): substitutes the occurrences of the parameters with

their run time values into a file.

• Environment command (ENV): sets a collection of environment variables in the

shell used to execute the template task on the remote node.

Each of the commands has a specific configuration dialog to compose the command. From

these dialogs it is possible to pick up the parameters as explained in the previous sections

and the files. All of the dialogs feature an additional tab containing a list of the files that

have been previously entered by the user; they can be filtered by selecting all the files,

shared files, input, or output files.

NOTE: Differently from what happens for the shared files, for input

and output files it is not possible to specify the Virtual Path property

while entering the file information. This value is automatically gen-

erated by looking at the file name of the file. It is still possible to

modify that property once the project has been loaded in the user

interface from the project view as discussed later.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 14

Figure 9 - Aneka Job Wizard: Commands Page.

4.1.6 Finalizing the Task Template

The creation of commands is the last step for creating the template. Figure 10 shows the

Job Completion page. The user is presented with different options:

• It is possible to save the task template into an XML file. This is accomplished by

providing a name into the Save path text box or by pressing the Browse button to

look for an existing file. Once the name is set, it is possible to press the Save but-

ton.

• It is possible to directly edit the XML source file of the task template. This is ac-

complished by clicking the Edit button. This feature is only available on the

.NET/Windows version; when the code is compiled for the Mono environment an in-

formative message is displayed in place of the XML editor that allows to modify the

source of the template.

• It is possible (default action) to open a project and run the parameter sweep appli-

cation into the Design Explorer. This option is checked by default and opens up a

Project Window through which the users can monitor and execute and modify the

template.

By pressing the Finish button if the Execute Job on Finish is checked the project window is

open otherwise the entire template goes lost if not saved into an XML file.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 15

Figure 10 - Aneka Job Wizard: Job Completion Page.

4.2 PSM File Structure

The Design Explorer provides a way to serialize into an XML its data. It is possible to save

only definition of the task template as a Parameter Sweep Model file (*.psm) or to save

the entire project into a file as an Aneka Parameter Sweep Project file (*.wbch). The pro-

ject file is meant to be contain additional data that define the project itself and not only

the task template, while the PSM file simply contains the task definition and the QoS set-

tings4. It is also possible to create a Design Explorer project by starting from a PSM file; in

this case the designer will automatically add the missing information and convert the for-

mat.

Figure 11 shows the relationship between the two formats. Since this information is sub-

ject to change when more features will be added to the Design Explorer we will only con-

centrate on the description of the PSM file structure that is also the one used by the PSM

API exposed by Aneka.

The entire structure and content of the PSM file used to illustrate the creation process of

the Task Template is depicted in Figure 12. There exist one root node whose tag name is

psm that contains the following elements:

4At the moment the only difference are few enclosing nodes that wrap the content of the PSM file
and maintain the name of the project.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 16

• qos node: contains the values for the Quality of Service parameters selected for

the execution of the application. If the QoS settings have not been enable this

node can be empty or missing.

• name node: contains the name entered in the first step of the wizard for the pa-

rameters sweep application.

Figure 11 - Aneka Parameter Sweep File and Parameter Sweep Model File.

• description node: contains the description of the parameter sweep application.

• workspace node: contains the path to the workspace for the application execution.

• parameters node: contains a collection of nodes that identify all the parameters

that have been defined. These nodes all have the name, type, and comment at-

tributes and can be of the following type:

o single node: identifies a single parameter. It contains an additional attrib-

ute (value) representing the value of the parameter.

o range node: identifies a range parameter. This parameter has three addi-

tional attributes that represent the lower bound (from), the upper bound

(to) of the range, and step (interval) used to generate numbers.

o random node: identifies a random parameter. This parameter has two addi-

tional attribute that represent the lower bound (minValue) and the upper

bound (maxValue) used to define the range from which numbers are ran-

domly picked.

o enum node: identifies an enum parameter. It contains a list of value nodes

defining the elements of the enumeration set.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 17

• sharedFiles node: contains a list of file nodes representing the information to lo-

cate and safely copy the files from the local file system to the remote node. The

file node has two attributes path and vpath. The first contains the local path of

the file, while the second identifies the path on the remote node that is merely

represented by the file name of the file.

Figure 12 - PSM File Content.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 18

• task node: contains the definition of the input and output files and the operations

that have to be performed on the remote node for each of the job instances. This

node has three major nodes:

o inputs node: contains a list of file nodes representing the input files.

o outputs node: contains a list of file nodes representing the output files.

o commands node: the possible nodes contained in this node are the follow-

ing:

▪ copy node: stores the information related to the copy command. It

contains two attributes src and dest that respectively represent the

source path to the file and the target path to copy.

▪ delete node: stores the information related to the delete command.

It contains only one attribute file representing the path to the file to

delete.

▪ execute node: stores the information related to execute command.

It contains two attributes cmd and args thar respectively represent

the command to execute and its arguments.

▪ substitute node: stores the information relate to the substitute

command. It contains two attributes src and dest that respectively

represent the original path to the file and the path to the new file

with the occurrences of parameters replaced with the corresponding

values.

▪ env node: stores the information about the environment variables. It

contains a variables node featuring a list of variable node whose at-

tributes name and value respectively identify the name and the val-

ue of the environment variable to set.

By editing directly the PSM file it is possible to change the content of the task template

without the support of the Design Explorer. This opportunity can be exploited by other ap-

plications that as a result of their execution can produce PSM file that can be used in the

Design Explorer.

4.3 Managing and Executing Parameter Sweep Applications

Once the user has created the task template the Design Explorer will open a project win-

dow that allows modifying the template and running the corresponding parameter sweep

application.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 19

4.3.1 Project Window Layout

Figure 13 shows the project window. The same window is obtained if the user selects File

-> Open... and chooses a .wbch or .psm file. There are three main areas in the project

window that is worth noticing:

• left pane: the left pane features a tree view where the users can see and modify

the definition of the task template. By clicking on the nodes of the tree at the bot-

tom of the pane it is possible to see the properties of each node and modify those

that are not read only.

• right pane: the right pane is composed by two tabs and hosts a dynamic view of the

parameter sweep application while it is running on the Cloud. More precisely, the

Jobs tab hosts the list of jobs generated by the parameter sweep application, the

Stats tab collects some statistics about the whole application and estimates the

completion time.

• bottom panes: the bottom panes contain four consoles. The Output console con-

tains the log of the PSM engine while the Error console dumps all the errors oc-

curred while interacting with Aneka. The Aneka console dumps all the messages

that are logged by the Aneka client APIs. And the Debug console provides a view of

the state transition of the single tasks. These consoles are only active while the

application is running and the user can save their content by pressing the Save but-

ton. This feature is not valid for the Debug console.

Figure 13 - Project Window.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 20

The project window also contains a toolbar that shows the location of the project file and

some buttons to save the project, control its execution, and control the appearance of the

main window. At the bottom of the window a status bar contains the additional infor-

mation about the project such as:

• Save status: a floppy disk indicates whether the project has been saved since the

last changes have been applied. If the icon representing the floppy disk is blue the

project has to be saved, if the icon is black the project has been saved.

• Running status: a small ball icon indicates whether the project is running or not. A

blue color indicates that the application is idle and has not been run yet. A green

or yellow color indicates a running application: if the color is yellow some error oc-

curred, while a green color stands for a flawless run. A red color indicates a per-

manent failure.

• Project information: the last icon in the status bar provides access to some infor-

mation about the project itself. At the moment the information displayed when

clicking the icon are limited to the name of the project and the location of the cor-

responding project file.

• Contextual information: the portion of the status bar following the icons is used by

the Design Explorer to provide information about the last action performed. The

user can quickly have a look at this area to know what was the last task performed

by the environment for that project.

The layout of the project window can be changed by hiding some of the panels that com-

pose it. In particular the bottom panes and the left pane can be hidden by clicking the col-

lapse icon at the top right edge of the pane header. When the left pane is hidden the

icon in the toolbar becomes active and by clicking it is possible to restore the pane.

The same applies for the bottom pane that is controlled by the icon in the toolbar.

4.3.2 Editing the Task Template

If the project is not running, the user can still edit the parameters of the task template.

As shown before, the project window provides users with a tree view where it is possible

to browse the structure of the task template. The structure of the tree is similar to the

one of the XML file that stores the information of the template. Hence users can intuitive-

ly look for the elements they want to change.

Figure 14 shows the content of the left pane of the project taken as case study. There are

two main areas: the top area that shows the structure of the task template and the bot-

tom area providing contextual information about the tree node that is selected in the top

area. All the properties in the bottom area that are showed in bold can be changed, those

who are grayed not.

The content of the task template can only be changed if and only if the project is not run-

ning.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 21

Figure 14 - Project Content: Task Template Structure.

Previously (see section 4.1.4) it has been noted that the wizard does not allow for editing

the Virtual Path property of the input and output files. These values can be easily modi-

NOTE: The capability of changing the configuration of the task template from

the project window is limited and has to be performed with care. Differently

from the wizard the left pane does not perform all the checks against the val-

ues entered by the user and it is very easy to make mistakes that compromise

the execution of the application. For example, while editing the elements that

involve parameter placeholders there is no check to ensure that the new value

entered by the user is legally valid and this will make the application not run

properly. For this reason, this feature has to be used very carefully and to for

example change the name of files, the bound values of range parameters or

random parameters, or the value the value of single and enum parameters.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 22

fied from this interface by simply clicking on the input or output file of interest and edit-

ing the Virtual Path property. As already discussed this feature has to be used with ex-

treme care since the user interface does not perform any check on the value entered by

the user.

4.3.3 Connecting to Aneka

In order to execute a project it is necessary to authenticate against the Aneka Cloud. The

user has to provide the access point to the cloud and valid user credentials. This can be

done by selecting Edit →-> Preferences. Figure 15 shows the dialog where the user can

customize the connection to Aneka.

Figure 15 - Aneka Connection Form.

In order to connect to Aneka the Design Explorer need to know the access point to the

Cloud. This is a simple address composed by three components:

• Internet address: an internet address (IP or DNS name) representing the address of

the access point of the Aneka Cloud. If the access point to the Cloud is installed on

the local machine the user can enter localhost.

• Connection port: the port number where the access point to the Cloud is listening

for connections. By default Aneka listens on the 9090 port but during setup this in-

formation can be changed. Hence, it is important that user know what is the cor-

rect port number.

• Service name: the name of the service that is exposed by the access point to the

Cloud. This is always Aneka and must not be changed.

The rest of the information required are the user credentials that are constituted by the

user name and the password of a valid Aneka user. This information must be known in or-

der to access the Cloud.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 23

Once the user has entered valid information he or she can click the OK button to save

them into the Design Explorer.

4.3.4 Running the Project

Once the user has opened or created a new project he or she can run It by clicking the

play icon in the project window toolbar. As long as the project is running the run icon

shows the stop symbol and by clicking on it is possible to terminate the execution of the

project. Once the project naturally terminates or it is stopped the Design Explorer will au-

tomatically restore the play icon.

Once the user run the project and there are no problems in connecting with the Aneka

Cloud the Parameter Sweep application starts and the two tabs on the right pane are filled

with information about the running application. In particular, the application will generate

all the jobs from the template task and the PSM engine will queue them to the Aneka

Cloud for their execution. At this point the Jobs tab will contain the list of all the jobs of

the application while the Stats tab will feature a pie chart together with some time statis-

tics about the medium time spent by the job in each status allowed by the system.

From what concerns the execution itself a subdirectory in the workspace folder specified

in the project will be created in order to store all the output files of the current applica-

tion execution. The name of this directory is composed as follows:

PSM – Project Name_GUID

Where GUID is a Globally unique identifier automatically generated by the PSM engine and

ensured to be unique in the world. Each time the same project is run a new folder with a

new value of the GUID component is created in the workspace of the project. This avoids

that the results of different runs clash in the same folder.

While the project is running most of the activity is concentrated in the right pane of the

project window that hosts two tabs: Jobs Tab and Stats Tab. The bottom part of the pro-

ject window is occupied by two consoles that simply track the messages and the errors

generated by the system. In the next three sections we will illustrate the features of these

components.

NOTE: The information about the connection to Aneka are not per

project but are a property of the Design Explorer. This means that if

the user is running multiple projects at the same time they will run on

the same Aneka Cloud under the same user. It is possible to start one

project, change the connection details, and then start another pro-

ject in order to have a per project setting but this practice is not con-

sidered safe.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 24

4.3.5 Jobs Visualization

The Jobs Tab is the main view of the application running. It gives you a complete view of

all the jobs generated by the application and shows their current status. The tab gets

populated as soon as the application goes into running mode and gets continuously updat-

ed as the tasks change their state.

Figure 16 shows the content of the Jobs tab while the application is running. The jobs are

identified by an icon and a friendly name that is automatically generated by the PSM en-

gine. The icon identifies the status of the job. Here is the list of the different states in

which a job can be:

Figure 16 - Design Explorer Jobs Tab.

Unsubmitted

The job has not been submitted to the Aneka Cloud yet. When the Pa-

rameter Sweep application starts all the jobs are in this state.

StagingIn

The PSM engine is uploading input files to the Aneka Cloud. This state

appears if and only if the task template has some input files defined.

Queued

The job has been submitted to the Aneka Cloud and has been put into

the scheduler queue. At this stage the job is not running but it is wait-

ing to be dispatched to a resource for executing.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 25

Running

The job has been dispatched to some node and it is running. The Aneka

Cloud is then waiting for its completion to collect the results and send

them back to the scheduler.

StagingOut

The job has completed successfully its execution and the results have

been collected and put into the Aneka Cloud storage. The PSM engine

is downloading the output files of the job to the local machine. This

state only appears if the task template defines some output file.

Completed

The job is completed and all the output files, if any, have been down-

loaded to the local machine. This state identifies a successful comple-

tion.

Failed

The job is failed. This is state can imply different things: the job exe-

cution has failed or there has been an error while moving the job to or

within the Aneka Cloud that caused its failure.

Aborted

The job has been aborted by the user. This generally happens when the

user stops the execution of a specific job or stops the execution of the

entire application. The job can fall into this state even if staging in of

files fails.

The jobs tab also features a set of navigation controls that can simplify the management

of large number of jobs. In this case there are only 34 jobs generated and they can fit

within the same window. In case the number of jobs is huge an additional navigation con-

trol shows up at the bottom of the Jobs tabs that help the user to navigate between the

pages into which the collection of jobs is divided.

Figure 17 - Jobs Navigation Control.

The control allows user to quickly move to the first and the last page and to browse the

pages by moving back and forward or simply entering the number of the page to view.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 26

The bottom area of the Jobs tab is completed by an informative text containing the num-

ber of all the jobs generated on the left and two icons on the right side. These two icons

provide some information about the status of the Job Manager) and the visualization

settings of the Jobs tab (such as the current view mode, the total number of jobs, and the

number of jobs per page) . The Jobs tab can also filter the list of Jobs according to their

state in order to show only the interesting information for the user. In order to do so it is

possible to right click with the mouse on the white area containing the Jobs and select the

Filter item from the context menu that appears.

Figure 18 shows a possible configuration of the context menu. In the figure all the possible

states are selected. The user can individually select the states that want to browse or

click on the All or None options that respectively show all the jobs or none of them. The

Jobs Tab also allows to select a different visualization mode and Figure 19 shows the pos-

sible options under the View submenu of the same context menu.

Figure 18 - State Filter Context Menu

Figure 19 - List View Mode Menu.

It is possible to use a simple list, a tiled view, a small or a large icons view. The last two

options organize the jobs into classes that map to their state and provide a classified view

of all the jobs.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 27

4.3.6 Statistical Data

The Stats tab provides users with a statistical view of the application. In particular it col-

lects the statistics of the execution and shows an overall view of the job state distribution

by means of a pie chart.

Figure 20 - Stats Tab.

Figure 20 shows the content of the Stats tab while the project is running. As it can be no-

ticed the tab is divided into three major areas:

• Pie chart: the main area of the Stats Tab is devoted to the visualization of graphs.

At present there are two graphs available: Job Status Monitor (see Figure 20) and

Jobs Distribution (see Figure 21). The first one displays a pie chart showing an ag-

gregate view of the state of all the tasks that belong to the application. Each dif-

ferent state a task may be in is displayed with a different color. The second one

provides an aggregate view of the distribution of tasks among the different nodes

used to run the application. Each slice represents a specific node and its percent-

age value represents the fraction of total tasks (running, staging out, completed)

that have been dispatched to that node. Both of the two graphs are updated in run

time.

• Details panel: this panel gives the breakdown of the jobs composition by showing

for each state how many jobs are in that state and the total number of jobs. The

panel also provides some very basic time estimates and the elapsed time since the

application started. Users can also control the collection interval of the data, the

default value is set to 3000 ms but according to the nature of the jobs a longer or

shorter interval can provide a better refresh. The bottom section of the panel is

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 28

used to show the information about the Quality of Service parameters that have

been entered by the user.

• Bottom area: the bottom area contains the controls for customizing the visualiza-

tion of the stats panel. A control button (Hide/Show) is used to change the visibil-

ity property of the of the Details panel. This feature is useful when the user wants

to have a larger view of the selected pie chart: by hiding the details panel the pie

chart will use the entire area of the stats panel. A combo box allows the user to se-

lect the specific graph to be visualized in the main area of the stats panel. A small

icon () allows users to show the legend while the Job Status Monitor is selected

and it is only active while the application is running. As shown in Figure 20 by click-

ing on the icon a modal dialog pops up containing the legend that maps the colours

used in the chart with the state values of the tasks.

Figure 21 - Jobs Distribution Pie Chart.

4.3.7 Analyzing the Console

The bottom pane provides user with access to two consoles: Output Console and Error

Console.

The Output Console is used to log the interaction of the Design Explorer with the Aneka

Cloud while running the application, while the Error Console is used to trace all the errors

that occur during the interaction. The user can switch between the two consoles by click-

ing the corresponding buttons at the bottom of the pane. The Output Console logs the in-

teraction of the Design Explorer with Aneka. In particular what is interesting is the track-

ing the status change of the different jobs while they are executed in the Aneka Cloud.

Figure 22 shows an example of the content of the Output Console. While the Jobs and

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 29

Stats tabs provide a visual information about the execution of the application, the console

shows detailed text information about state transitions and the identifier of the nodes

where each of the job is executed. This information can then be saved to file by pressing

the Save button, while the Clear button can be used to clean the console.

Figure 22 - Design Explorer Output Console.

The Error Console mostly traces exception occurred during execution and error messages.

The information displayed about exceptions are the following:

• Exception type: the .NET type of the exception occurred at program level.

• Exception message: informative message describing the nature of the exception.

• Stack trace: the exact point in the execution stack where the exception has oc-

curred.

This information, except for the exception message, are not of a great help but can be

used to provide an helpful feedback to the Aneka development team for dealing with the

problem.

Figure 23 shows a possible content of the Error Console. As an example the error occurring

if the user does not provide valid connection information is reported. As happens for the

Output Console the user can save the content of the Error Console to a file by pressing the

Save button.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 30

Figure 23 - Design Explorer Error Console.

The Aneka Console provides low level access to the log information generated by the Ane-

ka client that is in charge of managing the interaction with the Aneka Cloud. This infor-

mation can be useful for debugging purposes in case of unexpected behaviour of the appli-

cation.

Figure 24 - Design Explorer Aneka Console.

Figure 24 shows an example of the content of the Aneka Console. The log messages are

directly obtained by the Aneka logging APIs and written into the console. In the figure we

can see that the client manager has not been able to retrieve from the Cloud some op-

tional file and the details of the occurred exceptions are presented to the user. As hap-

pens for the other two consoles it is possible to save and clear the content displayed.

The Debug Console provides an insight into the state transitions of tasks. It displays a grid

view recording the state change of each task in real time together with additional infor-

mation about the tasks themselves such as the name, the identifier, the node on which

the task has been executed and the current aggregate values of each of the possible

states. The information collected and presented in this console is also available in textual

form in the Output Console, the Debug Console just provides this information in a more

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 31

structured way. Figure 25 shows an example of the content of the Debug Console after the

execution of a sample application.

Figure 25 - Design Explorer Debug Console.

The Debug Console provides the facility of saving the set of transitions as an XML file that

can be further analyzed and consumed by other applications. Figure 27 shows a portion

the XML export of the Debug Console.

Figure 26 - Debug Console XML Export.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 32

5 Example

In this section we will guide the user to create a simple parameter sweep application that

can be used to demonstrate the features discussed so far of the Design Explorer. In order

to simplify the example we will use a ready to use application from the biology field that

is called BLAST.

5.1 BLAST

BLAST (Basic Local Alignment Search Tool) is a tools for looking for similarities between a

given sequence of genes and those stored into classified databases. The BLAST application

is available for download from the National Centre for Biotechnology Information (NBCI)5

website that also provides a classified repository of all the databases that can be used to

search for similarities. The role of these databases is really important since it is one of the

most important knowledge repository for genome sequences and helps researchers to

identify and study sequences of genes.

5.1.1 BLAST Distribution

BLAST is a set of tools that allows performing advanced queries against genome databases

and it is available for different platforms (Windows, Linux, Mac OS X, …). In this simple

example we will concentrate our attention only on one component that is blastall, which

performs the basic search for a genome sequence into a given database.

5.1.2 Executing a BLAST Query

In order to search a given database it is necessary to prepare (format) it properly. Another

tool in the BLAST distribution allows formatting the database in a way in which the

searches made by blastall are possible: formatdb. This tool takes as input a database file

and create a set of file indexes that are used by the blastall application. Once these in-

dexes are created the original database file is not required anymore.

The search of a specific sequence of genes against a given database is then performed by

the following steps:

• download the BLAST distribution (blastall, formatdb) from the NCBI website

• download the <database> file from the NCBI website

• execute: formatdb -i <database> -p F -o T

• execute: blastall -p blastn -d <database> -i <sequence> -o <result>

where:

• <database> is the database file name downloaded from the NCBI website

5www.ncbi.nlm.nih.gov/BLAST/

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 33

• <sequence> is the file name of the sequence of genes to look for

• <result> is file name where the result of the search are stored

The content of the <sequence> file is basically a sequence of characters representing the

genes we are looking for. An example of the content of this file is the following:

>Test

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA

TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACC

ATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAG

CCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAA

GTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCC

AGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGATGATTG

AAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTT

The content of the <result> file is a list of hits in the selected database.

5.1.3 Parallelizing a BLAST Task

There are many way to parallelize a BLAST query against a database. In this simple exam-

ple we will use the Parameter Sweep Model in order to automatically perform multiple

BLAST queries against the same database over a distributed infrastructure.

Since the database is the same it can be initially prepared for the search by performing

the formatdb operation offline. Hence, the only operation that will be distributed will be

the blastall command that will cover different sequence files.

An alternative approach that can be taken is to perform the search operation against mul-

tiple databases. In this case the since the database changes it becomes a parameter of the

application and the formatdb operation has to be done as an execute task of the job that

is distributed.

Within the context of this example we will only consider the first approach and we will use

as search database the one containing the gene sequences of the Escheria Coli (ecoli.nt)

available from the NCBI website.

For convenience all the files required to run the example are provided in the following

folder:

[Program Files]\Manjrasoft\[Aneka Version]\examples\Parameter Sweep Model\BLAST

This folder contains the following files:

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 34

• ecoli.nt: database of gene sequences of the Escheria Coli

• blastall.exe: Windows version of the blastall program.

• formatdb.exe: Windows version of the formtdb program.

• seq0.txt, …, seq2.txt: sequence input files.

• blast.psm: Parameter Sweep Model file for the blast task tamplate.

• blast.wbch: Aneka Parameter Sweep file for the blast project.

The last two files are provided for convenience and will be created by following the steps

that are provided with this example.

5.2 Creating the Parameter Sweep Application for BLAST

5.2.1 Identifying Parameters

The first step to do while creating a task template is to identify the parameters that are

involved in the application and their nature. In this case since we have decided to perform

multiple searches against the same database we will have the following parameters:

• SequenceFile: it could be a range or an enum parameter.

• DatabaseFile: it is a fixed parameter the value is ecoli.nt.

• ResultFile: it is a parameter depending on the SequenceFile parameter.

We can collapse the SequenceFile and ResultFile parameters into a single parameter Se-

qNum of type Range:Integer [0,2:1] and compose the names of the sequence and the re-

sult files accordingly.

5.2.2 Selecting Shared Files

In order to perform the BLAST search we need to prepare the database first by executing

the command:

formatdb -i ecoli.nt -p F -o T

This operation will create the following index files that are required by the blastall pro-

gram to perform the search:

• ecoli.nt.nhr

• ecoli.nt.nin

• ecoli.nt.nnd

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 35

• ecoli.nt.nni

• ecoli.nt.nsd

• ecoli.nt.nsi

These files together with the blastall.exe executable are the shared files of out applica-

tion since they are required by each of the jobs that are created from the task template.

5.2.3 Identifiying Input and Output Files

The blastall command requires the set of indexes to perform the search, the specific se-

quence file to be looked for and it produces the a result files containing the matches

found in the database.

Since all the index files are already provided to each job (as well as the blastall.exe ex-

ecutble) the only input file to define in the task template is the sequence file. For what

concerns the output files we have only one file that is represented by the result file pro-

duced by the blastall command. Both input and output files are dependent on the SeqNum

parameter that can be used to compose their names as follows:

• Input file: [path to]seq($SeqNum).txt6

• Output file: result($SeqNum).txt

There are no other files to consider.

5.2.4 Creating the Task Commands

The commands section of the Task Template will only contain one single command that is

an execution command (EXE) that will run the blastall program. In this case we will have

the following settings:

• cmd: blastall.exe

• args: -p blastn -d ($Database) -i seq($SeqNum).txt -o result($SeqNum).txt

This command will execute the BLAST search and produce the result file.

5.2.5 Using the Wizard and Creating the .psm and .wbch Files

The table below shows a summary of the data that need to be entered in the wizard in

order to create the task template:

Parameters Database (Single: [path to] ecoli.nt)
SeqNum (Range:Integer [0,2:1])

6[Path to] identifies the full path to the seqK.txt files where K = 0,1,2.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 36

Shared Files [path to] blastall.exe
[path to] ecoli.nt.nhr
[path to] ecoli.nt.nin
[path to] ecoli.nt.nsd
[path to] ecoli.nt.nnd
[path to] ecoli.nt.nni
[path to] ecoli.nt.nsi

Input Files [path to] seq($SeqNum).txt

Output Files result($SeqNum).txt

Commands [EXE]
cmd: blastall.exe
args: -p blastn -d ($Database) -i seq($SeqNum).txt -o result($SeqNum).txt

In order to create the task template it is only necessary to select File ->→ New... and pro-

vide a name, a description, and a workspace directory for the project. Figure 27 shows the

first page of the wizard where all this information is entered.

Figure 27 - Entering the Details of the BLAST Project.

Optionally we can also select some quality of service parameters. For example in Figure 27

we set the deadline for our application, provide a budget of 100 (dollars), and select the

Cost Optimization strategy. The QoS Requirements options group is accessible and edita-

ble if the Enable QoS Settings checkbox is selected.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 37

The next steps of the wizard will add the information in the table. Once the user has

reached the Finalize page he or she can save the template with the blast.psm file name

and press the Save button as shown in Figure 28. At this point the Designer Explorer saves

the Parameter Sweep Model file, creates an Aneka Parameter Sweep project, and loads

the project window ready to be executed on the Aneka Cloud.

The first thing to do is to save the project. By using the wizard the user has selected the

option to save the Parameter Sweep Model file and this does not automatically saves the

project file too. In order to save the project it is sufficient to select File -> Save and since

the project is not saved a Save File dialog will pop up and the user will be asked to pro-

vide a name for the project. We provide the blast.wbch file name and save the project

file into the Workspace directory of the project.

Figure 28 - Saving the BLAST Task Template.

Figure 29 and 30 show the content of the blast.psm file and the blast.wbch file. The user

can check whether, except for some directory information, the structure and the content

of the file generated while trying the example are the same.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 38

Figure 29 - BLAST PSM File Content.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 39

Figure 30 - BLAST WBCH File Content.

At this stage all the data of the project is saved and the application is ready to be run.

5.3 Running the BLAST Project

In order to run the project it is necessary to properly set up the connection information to

the Aneka Cloud. This information as already shown can be provided by selecting the menu

voice: Edit -> Preferences... This command pops up the form shown in Figure 15 (see Page

19). This is the form where the user has to enter user name, password, and the address to

a Aneka Cloud access point as described in section 4.3.3.

Once the connection details are entered the user can run the application by clicking on

the play icon of the toolbar and the PSM engine will start submitting jobs to the Aneka

NOTE: In the two listings some long information about the path to

the files and the description of the parameters have been substi-

tuted with three dots in order to properly display the content of

the files.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 40

Cloud. The current setup of the task template will only generate three jobs: one for each

sequence file that has to be searched.

Figure 31 shows the BLAST Demo application running. Once the application is finished the

user can found the result files into the PSM – BLAST Demo_<GUID> subdirectory in the pro-

ject workspace folder.

Figure 31 - BLAST Demo Application Running.

Figure 32 shows the content of one of the result files obtained from the execution of the

BLAST application. The user can perform multiple runs by clicking again on the play button

on the toolbar. As already introduced, for each of the execution a new subdirectory for

the run is created. In this case there is no point in executing more runs of the application

since the result of the search will be the same.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 41

Figure 32 - Content of the Result File.

5.4 Extending the BLAST Example

As discussed in section 5.1.3 it is possible to increase the workload submitted to the Aneka

Cloud it is possible to perform multiple searches on different databases. In this case the

Database parameter can be characterized as enum parameter listing all the possible data-

bases that will be searched. By changing the Database parameter from single to enum it is

not possible to perform database formatting off line, it is then necessary to make that

task part of each job. This means that the following changes have to be applied to the

task template:

• Configure the formatdb.exe executable as a shared file

• Remove the ecoli.nt.xxx files as shared files (these will be generated by the task

• Configure the Database parameter as an enum parameter

• Introduce the ($Database) input file

• Introduce first an EXE task executing formatdb -i ($Database) -p F -o T

• Leave the existing EXE task as it is.

The implementation of these changes is left to the reader.

Aneka 5.0 Using the Design Explorer

Copyright © 2010 Manjrasoft Pty Ltd. 42

6 Conclusions

In this tutorial we introduced the basic concepts concerning Parameter Sweep Applica-

tions. We described the support provided by Aneka for implementing and managing this

kind of applications and presented with major detail the Design Explorer.

The Design Explorer is integrated environment for prototyping and executing Parameter

Sweep applications on top of Aneka Clouds. It is a project based workspace and provides a

user interface through which users can define the template task characterizing Parameter

Sweep Applications by using a simple step by step procedure. Task templates can be saved

as plain XML documents within the project file or directly executed in the environment

which allows monitoring the status of the application and collects some various statistics

for the execution.

This tutorial has covered the following arguments:

• General notions about the Parameter Sweep applications.

• Support provided by Aneka for running Parameter Sweep applications (Parameter

Sweep Model).

• Overview of the Design Explorer features.

• How to create a simple Parameter Sweep application with input and output files.

• How to manually create the XML file that represent the template task for the Pa-

rameter Sweep Application without the support of the Design Explorer.

• How to compose the template task by using the command provided through the De-

sign Explorer.

• How to monitor and control the execution of a Parameter Sweep application.

All these features have been demonstrated by developing the BLAST Demo application

from scratch.

This tutorial does not fully cover what can be done with the Parameter Sweep Model that

represents the set of APIs that Aneka exposes to developers for building Parameter Sweep

applications. In particular this tutorial did not explain how to compose by using the API a

task template and generate and run tasks from it. For more detailed information about

this and other aspects the user can have a look at the corresponding APIs documentation

(namespaces Aneka.PSM.Core, Aneka.Tasks.BaseTasks).

