
MANJRASOFT PTY LTD

Developing Thread Model Applications

Aneka 5.0

Manjrasoft

This tutorial describes the Aneka Thread Programming Model and explains how to create distributed
applications based on it. It illustrates some examples provided with the Aneka distribution that are
built on top the Thread Model. It provides a detailed step by step guide for users on how to create
an application by using the Microsoft Visual Studio 2005 Development Environment. After having
read this tutorial, the users will be able to develop their own application on top of the Aneka Thread
Model.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd.

Table of Contents

1 Prerequisites ... 1

2 Introduction .. 1

3 Thread Model .. 2

3.1 Local vs Remote Threads ... 2

3.2 Working with Threads ... 3

3.3 Additional Considerations .. 9

3.3.1 Serialization .. 9

3.3.2 Thread Programming Model vs Common APIs ... 10

4 Example: Distributed Warhol Filter. .. 11

4.1 What is the Warhol Effect? .. 11

4.2 Application Structure .. 12

4.3 WarholFilter: Filter Implementation ... 15

4.3.1 Complexity Analysis... 18

4.4 WarholApplication: Distributed Filtering Coordination 18

4.5 Program: Putting all together .. 31

4.6 Compiling and building the Application ... 34

4.6.1 Building the demo in Visual Studio 2005 ... 34

4.6.2 Building the demo from the command line ... 35

4.6.3 Running the application .. 36

5 File Management ... 37

5.1 Aneka File APIs .. 37

5.1.1 File Types .. 40

5.1.2 Path vs VirtualPath, and FileName ... 40

5.1.3 File Attributes ... 41

5.2 Providing File Support for Aneka Applications. .. 42

5.2.1 Adding Shared Files ... 42

5.2.2 Adding Input and Output Files .. 43

5.2.3 Using Files on the Remote Execution Node ... 45

5.2.4 Collecting Local Output Files .. 46

5.3 Observations ... 48

6 Aneka Thread Model Samples .. 48

6.1 Mandelbrot .. 48

6.1.1 Mandelbrot Set .. 48

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd.

6.1.2 Parallel Mandelbrot computation ... 49

6.1.3 Mandelbrot Sample ... 49

6.1.4 Conclusion .. 50

7 Conclusions ... 51

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 1

1 Prerequisites

In order to fully understand this tutorial the user should be familiar with the general

concepts of Grid and Cloud Computing, Object Oriented programming and generics,

distributed systems, and a good understanding of the .NET framework 2.0 and C#.

The practical part of the tutorial requires a working installation of Aneka. It is also

suggested to have Microsoft Visual Studio 2005 (any edition) with C# package installed1

even if not strictly required.

2 Introduction

Aneka allows different kind of applications to be executed on the same Grid/Cloud

infrastructure. In order to support such flexibility it provides different abstractions

through which it is possible to implement distributed applications. These abstractions map

to different execution models. Currently Aneka supports three different execution models:

• Task Execution Model

• Thread Execution Model

• MapReduce Execution Model

• Parameter Sweep Model

Each execution model is composed by three different elements: the WorkUnit, the

Scheduler, the Executor, and the Manager. The WorkUnit defines the granularity of the

model; in other words, it defines the smallest computational unit that is directly handled

by the Aneka infrastructure. Within Aneka, a collection of related work units define an

application. The Scheduler is responsible for organizing the execution of work units

composing the applications, dispatching them to different nodes, getting back the results,

and providing them to the end user. The Executor is responsible for actually executing one

or more work units, while the Manager is the client component which interacts with the

Aneka system to start an application and collect the results. A view of the system is given

in the figure below.

1 Any default installation of Visual Studio 2005 and Visual Studio 2005 Express comes with all the

components required to complete this tutorial installed except of Aneka, which has to be

downloaded and installed separately.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 2

Figure 1 - System Components View.

Hence, for the Thread Model there will be a specific WorkUnit called AnekaThread, a

Thread Scheduler, a Thread Executor, and a Thread Manager. In order to develop an

application for Aneka the user does not have to know all these components; Aneka handles

a lot of the work by itself without the user's contribution. Only few things the users are

required to know:

• how to define AnekaThread instances specific to the application that is being

defined;

• how to create a AnekaApplication and starts the execution of threads;

• how to control the AnekaApplication and collect the results.

In the remainder of this tutorial will then concentrate on the Thread Model even if many

of the concepts described can be applied to other execution models.

3 Thread Model

3.1 Local vs Remote Threads

The modern operating systems provide the abstractions of Process and Thread for defining

the runtime profile of a software application. A Process is a software infrastructure that is

used by the operating system to control the execution of an application. A Process

generally contains one or more threads. A Thread is a sequence of instructions that can be

executed in parallel with other instructions. When an application is running the operating

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 3

system takes care of alternating their execution on the local machine. It is responsibility

of the developer to create a consistent computation as a result of thread execution.

The Thread Model uses the same abstraction of for defining a sequence of instructions that

can be remotely executed in parallel with other instructions. Hence, within the Thread

Model an application is a collection of remotely executable threads. The Thread Model

allows developers to virtualize the execution of a local multi-threaded application

(developed with the .NET threading APIs) in an almost complete transparent manner. This

model represents the right solution when developers want to port the execution of a .NET

multi-threaded application on Aneka and still use the same way of controlling the

execution of application flow, which is based on synchronization between threads.

Developers that are familiar with multi-threaded applications will find the Thread Model

the most natural path to program distributed applications with Aneka. The transition

between a .NET thread and an Aneka thread is almost transparent. In the following a

sample application will be used to discuss how to use Aneka threads.

3.2 Working with Threads

Within the .NET threading model a thread is a represented by the Thread sealed class that

can be configured with the method to execute through the ThreadStart class. The users

activates a thread by calling the Start method on it and by using the APIs exposed by the

Thread class it can:

• Check the status of the thread by using the Thread.State and the Thread.IsAlive

properties.

• Control its execution by stopping it (Thread.Abort).

• Suspending and resuming their execution (Thread.Suspend and Thread.Resume).

• Wait for its termination by calling Thread.Join.

The Thread.Join, Thread.Suspend, and Thread.Resume are the operations that allow

developer to create basic synchronization patterns between threads. The Thread class

provides additional APIs that cover:

• Thread affinity.

• Volatile read and write.

• Critical region management.

• Asynchronous operations.

• Stack management.

More complex and advanced synchronization pattern can be obtained by using other

classes of the .NET threading APIs that does not have any reference to the Thread class.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 4

In order to remotely execute a thread, the Thread Model provides a counterpart of the the

Thread class: AnekaThread. The AnekaThread class represents the work unit in the Thread

Model and exposes a subset of the APIs of System.Threading.Thread. It is possible to

perform almost all the basic operations described before and the following table identifies

the mappings between the two worlds.

.NET Threading API Aneka Threading API

System.Threading Aneka.Threading

Thread AnekaThread

Thread.ManagedThreadId (int) AnekaThread.Id (string, from WorkUnit)

Thread.Name AnekaThread.Name (from WorkUnit)

Thread.ThreadState (ThreadState) AnekaThread.State (WorkUnitState)

Thread.IsAlive AnekaThread.IsAlive

Thread.IsRunning AnekaThread.IsRunning (from WorkUnit)

Thread.IsBackground [Not provided]

Thread.Priority [Not provided]

Thread.IsThreadPoolThread [Not provided]

Thread.Start AnekaThread.Start

Thread.Abort AnekaThread.Abort

Thread.Sleep [Not provided]

Thread.Interrupt [Not provided]

Thread.Suspend [Not provided]

Thread.Resume [Not provided]

.... [Not provided]

Table 1 - Local vs Remote Thread

The AnekaThread class implements the basic Thread operations but does not give any

support for the advanced operations such as: critical region, stack, apartment, culture,

and execution context management. Moreover, some basic operations have not been

supported, these are:

• Thread Priority Management.

• Suspend, Resume, Sleep, and Interrupt.

The reason why these operations have not been supported is because the AnekaThread

instances are remotely executed on a computation node that generally executes work

units coming from different distributed applications. It is not possible to keep the

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 5

resources of a computation node occupied with a AnekaThread instance that is sleeping,

or suspended. For what concerns the priority Aneka does not provide any facility.

namespace Aneka.Threading

{

 /// <summary>

 /// Class AnekaThread. Represents the basic unit of work

 /// in the Thread Model. A AnekaThread instance is configured with a

 /// specific method to execute and its remote execution is

 /// started.

 /// </summary>

 public class AnekaThread : WorkUnit

 {

 /// <summary>

 /// Gets a boolean value indicating whether the AnekaThread instance

 /// instance is alive (not: Unstarted | Completed | Aborted |

 /// Failed)

 /// </summary>

 public bool IsAlive { get; }

 /// <summary>

 /// Gets the reflection and instance information on the method that is

 /// executed on the remote computation node.

 /// </summary>

 public RemoteMethodInfo TargetMethodInfo { get; }

 /// <summary>

 /// Gets the instance representing the target of the method invocation.

 /// </summary>

 public object Target { get; }

 /// <summary>

 /// Creates an instance of the AnekaThread.

 /// </summary>

 /// <param name="start">thread start method information.</param>

 /// <param name="application">grid application.</param>

 public AnekaThread(ThreadStart start,

 AnekaApplication<AnekaThread, ThreadManager> application)

 { ... }

 /// <summary>

 /// Starts the execution of the AnekaThread.

 /// </summary>

 public void Start() { ... }

 /// <summary>

 /// Aborts the execution of the AnekaThread.

 /// </summary>

 public void Abort() { ... }

 /// <summary>

 /// Waits until the execution of AnekaThread is terminated.

 /// </summary>

 public void Join() { ... }

 /// <summary>

 /// Waits until the execution of AnekaThread is terminated.

 /// </summary>

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 6

 /// <param name="time">Maximum interval of time to wait.</param>

 public void Join(TimeSpan time) { ... }

 }

}

Listing 1 - AnekaThread class.

Listing 1 presents the public interface of the AnekaThread class. Other than the

declaration of the basic operations for controlling the execution of a AnekaThread, the

class exposes two interesting properties that provide information about the method

executed remotely (TargetMethodInfo) and target of the invocation (Target).

In order to create a AnekaThread instance it is necessary to pass to the constructor two

parameters: a ThreadStart object and a reference to the AnekaApplication instance that

the threads belongs to. Once the thread has been created is State property is set to

WorkUnitState.Unstarted and it is possible to access the information about the method

that will be executed by the TargetMethodInfo property. This property extrapolates all

the reflection information used to recreate the execution environment on the remote

computation node. This property is of type RemoteMethodInfo whose interface is

described in Listing 2.

namespace Aneka.Threading

{

 /// <summary>

 /// Class RemoteMethodInfo. Wraps all the required information for executing

 /// a method in a remote computation node.

 /// </summary>

 public sealed class RemoteMethodInfo

 {

 /// <summary>

 /// Gets the display name of the assembly containing the definition of

 /// the method to execute.

 /// </summary>

 public string AssemblyName { get; }

 /// <summary>

 /// Serialized information of the target of the method invocation.

 /// </summary>

 public byte[] ObjectInstance { get; }

 /// <summary>

 /// Flags used to invoke the method.

 /// </summary>

 public BindingFlags Flags { get; }

 /// <summary>

 /// Name of the method to invoke.

 /// </summary>

 public string TargetMethod { get; }

 }

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 7

}

Listing 2 - Class RemoteMethodInfo.

While the use of TargetMethodInfo is mostly internal, the Target property is of more

interest for the user. This property exposes the updated value of the instance after the

execution of the AnekaThread and provides a quick way for performing the mapping

between the threads and the instances that are object of thread execution. When

programming with the .NET threading API developers have to maintain this mapping in a

specific data structure (list, hash-table, etc...) and it is their responsibility to keep it

updated when the state of the thread changes. By using the Aneka threading APIs no

additional code is required.

The second parameter required by the AnekaThread constructor is the reference to the

AnekaApplication class that groups all the instances belonging to the same application. A

property common to all the programming models supported by Aneka is the concept of

application. This can be generally described as a collection of related jobs that constitute

a distiributed computation. All the programming models must provide a local view of the

distributed application through a specific instance of the AnekaApplication class.

AnekaApplication<W,M> is a generic class and need to be specialized with the concrete

types that are related to the programming model implemented. In the case of the Thread

Model we have that:

• W, which must inherit from WorkUnit, is AnekaThread.

• M, which must implement IApplicationManager, is ThreadManager.

These two generic parameters represent respectively the basic unit of computation of the

model and the specific client manager used to handle the interaction with Aneka for the

given programming model.

Static Methods

The .NET Framework allows the execution of static methods as entry

points for Thread execution. While this feature makes perfectly sense in a

local execution context, it becomes unclear in a distributed environment.

Threads running in the same application domain share a static context. As

a result, the side effects of an execution can be captured into static

variables and still be accessible to the user. Threads running in different

application domains – and this is the case of AnekaThread instances – do

not share a static context. This makes the use of static methods quite

limited. For this reason the current implementation of the Thread Model

does no support the remote execution of static methods.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 8

The specific tasks of the AnekaApplication are the interaction with Aneka and providing

aggregate information on the execution of all the work units that it ows. Whereas in other

programming models (see the Task Model) the AnekaApplication class plays a more

concrete role, in the case of the Thread Model its role is mostly confined to the setup of

the distributed application. The .NET Threading APIs do not have a corresponding

application object and the execution flow of the application is mainly controlled by

directly operating on the thread instances by calling the methods exposed by the

System.threading.Thread class. In the case of Aneka the same approach has been

maintained and developers can directly operate on AnekaThread instances once they have

been created and assigned to a AnekaApplication instance.

The AnekaThread class provides all the required facilities to control its life cycle. Figure 2

depicts the life cycle of a AnekaThread instance. As soon as the instance is created it is in

the Unstarted state. A call to AnekaThread.Start() makes it move into the Started state

and causes the submission of the instance to Aneka. If the AnekaThread has some

dependent files to be transferred it moves to StagingIn state until all the dependent files

are transferred. The AnekaThread can then move directly to the Running state is any

computing node is available or being queued, thus moving into the Queued state. As soon

as execution completes if there are any dependent output files to be downloaded to the

client the states is changed to StatingOut otherwise it is directly set to Completed. At any

stage an exception or an error can occur that causes the AnekaThread instance to move

into the Failed state. The user can also actively terminate the execution by calling

AnekaThread.Abort() and this causes the AnekaThread instance to be stopped and its

state to be set to Aborted.

NOTE: The diagram also shows the Rejected state. This state is related to

the negotiation protocol and it is actually not active. AnekaThread

instances can be allocated to specific slots for their execution that can be

reserved exclusively. When starting an AnekaThread instance it is possible

to associate to it a reservation identifier that will map the instance to the

reserved slots. If this reservation identifier is not valid or expired the state

of the instance becomes Rejected and it is not allowed to run. The diagram

does not show to the ReScheduled state. This state is assumed when an

AnekaThread instance is interrupted during execution and put in the

scheduling queue gain. This could happen if the execution slot in which the

instance was running has been pre-empted by a reserved WorkUnit instance.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 9

Figure 2 - AnekaThread instance state transitions (client view).

3.3 Additional Considerations

3.3.1 Serialization

Since AnekaThread instances are moved between different application domains they need

to be serialized. The AnekaThread instance is declared serializable, but this does not

guarantee that all AnekaThread instances created by the users will be serializable. In

particular, since the AnekaThread is configured with a ThreadStart object referencing the

instance that is the target of the method invocation, the type containing the method

definition of the method need to be serializable too. The reason for this, is because the

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 10

infrastrcture will serialize the local instance on which the method will be invoked and

send it to the remote node.

In case the users provides a method that is not defined in a serializable type, the

AnekaThread constructor throws an ArgumentException alerting the user that the selected

method cannot be used to run a AnekaThread instance. This prevents the user from

creating a work unit that will not run.

3.3.2 Thread Programming Model vs Common APIs

As pointed out in section 3.1 the Thread Model allow developers to completely controll the

execution of the application by using the operations exposed by the AnekaThread class.

Once the AnekaApplication instance has been properly set up there is no need to maintain

a reference to it. The rationale behind this choice is that developers familiar with the

.NET Threading APIs do not have the explicit concept of application but simply coordinate

the execution of threads.

Since the Thread Model relies on the common APIs of the infrastructure, it takes

advantage of the services these APIs offer and these services can be used by developers

too. In this case the AnekaApplication class plays an important role in controlling the

execution flow, since it allows to:

• Monitor the state of AnekaThread instances by using events:

o AnekaApplication<W,M>.WorkUnitFailed

o AnekaApplication<W,M>.WorkUnitFinished

o GridApplicaiton<W,M>.WorkUnitAborted

• Programmatically control the execution of GirdThread instances:

o AnekaApplication<W,M>.ExecuteWorkUnit(W)

o AnekaApplication<W,M>.StopWorkUnit(W)

• Terminate the execution of the application:

o AnekaApplication<W,M>.ApplicationFinished

o AnekaApplication<W,M>.StopExecution

These APIs are available to all the models and allows developers to perform the basic

operations required to manage the distributed application in a model independent fashion.

For what concerns the Thread Model this seems to be unnatural even though can be useful

some times. This tutorial will not explore further this option and the reader is suggested

to look for the Task Model that naturally uses this APIs.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 11

It is important to notice that the result of using the AnekaThread operations or the

AnekaApplication operations is the same. The reason for this is that both of the two

classes relies on the ThreadManager class for performing the requested operations.

4 Example: Distributed Warhol Filter.

In this section we will show how to use the Thread Model and the AnekaThread APIs to

create a distributed image filter that performs the Warhol Effect. By developing this

simple application the user will be able to:

• Create a AnekaApplication instance configured for the Thread Model.

• Customize the execution of the a AnekaApplication with a configuration file.

• Create and customize AnekaThread instances with user specific code.

• Submit and control the execution of AnekaThread instances.

This tutorial is not an exhaustive guide to the APIs provided with the Thread Model but it

is a good start for developing applications based on distributed threads with Aneka.

4.1 What is the Warhol Effect?

There is no clear definition of what the Warhol Effect is but the effect transforms a given

picture into another that resembles in style the following painting of Marylin Monroe made

by the famous pop artist Andy Warhol (see Figure 3).

Figure 3 - Marylin Monroe prints (Andy Warhol).

Given the fact that the prints are made by a human without any specific algorithm it is

quite difficult to automate the process and there are many attempts on the web that are

trying to reproduce the same effect by means of a computer algorithm. Any filter

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 12

available in the web produces a result whose similarity in style with Andy Warhol's

paintings varies.

In order to produce a simple computer algorithm that perform the filter we will apply the

following restrictions:

• The output image produced by the filter is has a color depth of four colors (many

of the Warhol's paintings are basically made by using four colors).

• The colors of the original image are remapped and clustered into the new palette

made of three colors according to their brightness.

• The output image will provide an image that is two times the size of the original

one and is composed by organizing into a square four different samples of the same

image filtered with different palettes.

The outcome of this simple example will be a console application that given an input

image will produce a second image as described above. This application will use the

Thread Model and Aneka for distributing the execution of the steps required to perform

the filter.

4.2 Application Structure

The source code of this application can be found into the Aneka installation directory

under the Examples/Tutorials/ThreadDemo directory. There is a convenient Visual Studio

2005 Project that simplifies the build process, but that is not essential for completing the

tutorial.

In order to implement the application we will organize the whole application into the

three main classes:

NOTE: in the state transition diagram it also appear a Rejected state.

This state is related to the reservation infrastructure that is not active

at the moment. In simple terms, WorkUnit instances can be executed

with a reservation; this means that a specific slot in the system has been

reserved for their execution that is identified by an id. The Rejected

state come into play when a WorkUnit instance provides to the system a

reservation identifier that is not valid or expired. The diagram does not

show the ReScheduled state that appears when a WorkUnit, while

running, is terminated by the infrastructure and put into the scheduling

queue for being executed again. This could happen because the

execution slot assigned to the instance is expired and cannot be

extended.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 13

• Aneka.Examples.ThreadDemo.WarholFilter (see WarholFilter.cs): this class

performs the filter of the image and given a picture produces another picture that

is the same size of the original and remaps its colors.

• Aneka.Examples.ThreadDemo.WarholApplication (see WarholApplication.cs): this

class is responfsible for:

o setting up the AnekaApplication instance;

o configuring it with for the Thread Model;

o creating the AnekaThread instances and starting their execution;

o waiting for the completion of the AnekaThread instances and assembling

the four images produced into a single image.

• Aneka.Examples.ThreadDemo.WarholDriver (see Program.cs): this class constitutes

the main entry point of the application and is in charge of parsing the command

line parameters, creating and configuring the WarholApplication class, and starting

its execution. In case the command line parameters are not correct the class

displays a simple help that explains to ther user how to launch the application.

A summary view of the operations exposed by the three classes can be seen in Figure 4

(next page).

Figure 4 - Class diagram.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 14

These three classes are compiled into an executable (wahrolizer.exe) representing the

console application that perform the filter. The application can be started by the

command line as follows:

 warholizer input_file [output_file] [conf_file]

where:

input_file: path to the image taken as a input for the filter [mandatory]

output_file: path to the file where the filtered image will be saved to [optional]

conf_file: path to the configuration file for connecting to Aneka [optional]

The only mandatory parameter is input_file. If the user does not provide any save path for

the output image the application will automatically create a file named [input-file-

name].wahrol.[input-file-ext] where [input-file-name] and [input-file-ext] are

respectively the name and the extension of the input file. For example:

marilyn.jpg => marilyn.wharol.jpg

If the output file already exists the application will overwrite the file without asking the

user permission. For what concerns the settings used to connect to Aneka the user can

specify them into an xml file. A sample xml configuration file is already provided (see

conf.xml) and it contains the default values that are used when the user does not specify

a configuration file. This file whose content is displayed in Figure 4 can be used a starting

point for exploring the configuration settings of Aneka and creates customs configurations.

In the next sections we will describe the implementation of the filter, the main steps

carried out by the WarholApplication to perform the distributed filtering.

Figure 5 - Aneka Configuration File (conf.xml).

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 15

4.3 WarholFilter: Filter Implementation

The WarholFilter class implements the basic operation of remapping the colors of an

image into a three color palette that can be specified by the user.

// File: WarholFilter.cs

using System;

using System.Collections.Generic;

using System.Text;

using System.Drawing;

namespace Aneka.Examples.ThreadDemo

{

 /// <summary>

 /// Class WarholFilter. Performs the color remapping and clustering of an input

 /// image according to a specified palette. This class exposes an Image

property

 /// that is set by the user to the input image to filter and that points to the

 /// processed image after the Apply method has been called.

 /// </summary>

 [Serializable]

 public class WarholFilter

 {

 /// <summary>

 /// Sample palette made by Yellow, DarkGreen, and Navy Color constants.

 /// </summary>

 private static readonly Color[] YellowGreenNavy = new Color[3] { ... };

 /// <summary>

 /// Sample palette made by Fuchsia, Orange, and DarkBlue Color constants.

 /// </summary>

 private static readonly Color[] FuchsiaOrangeBlue = new Color[3] { ... };

 /// <summary>

 /// Sample palette made by Green, Orange, and Gainsboro Color constants.

 /// </summary>

 private static readonly Color[] GreenOrangeGainsboro = new Color[3] { ... };

 /// <summary>

 /// Sample palette made by Fuchsia, DarkOliveGreen, and WhiteSmoke Color

 /// constants.

 /// </summary>

 private static readonly Color[] FuchsiaGreenWhite = new Color[3] { ... };

 /// <summary>

 /// Input/Output bitmap.

 /// </summary>

 protected Bitmap image;

 /// <summary>

 /// Gets, sets the input image on which the filter is applied. This

 /// property stores the filtered bitmap after the Apply() method is

 /// called.

 /// </summary>

 public Bitmap Image

 { get { return this.image; } set { this.image = value; } }

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 16

 /// <summary>

 /// Target color palette.

 /// </summary>

 protected Color[] palette;

 /// <summary>

 /// Gets, sets the palette of colors that will be used to remap the imahge.

 /// </summary>

 public Color[] Palette

 { get { return this.palette; } set { this.palette = value; } }

 /// <summary>

 /// Applies the filter.

 /// </summary>

 public void Apply()

 {

 if (this.image == null)

 {

 throw new ArgumentNullException("Image is null!", "image");

 }

 if (this.palette == null)

 {

 throw new ArgumentNullException("Palette is null!", "palette");

 }

 this.image = this.Filter(this.image, this.palette);

 }

 /// <summary>

 /// Remaps the color values of the source image to the color values

contained

 /// in the given palette by clustering them according to their brightness.

 /// </summary>

 /// <param name="image">source image</param>

 /// <param name="palette">target palette</param>

 /// <returns>filtered bitmap</returns>

 protected Bitmap Filter(Bitmap source, Color[] palette)

 {

 // Step 1. reorder the palette according to the color brightness

 // Step 2. identify the minimum (min) and the maximum (max) brightness

 // values for the source image and creates (max – min) / length

 // clusters where the length is the size of the palette.

 // Step 3. invoke Rescale and compute the minimum brightness thresold

 // color values for each cluster.

 // Step 4. for each pixel of the image evaluates the birghtness and find

 // find the cluster into which the color will be mapped. Set the

 // color corresponding to that cluster in the output image.

 }

 /// <summary>

 /// Creates an array of threesold values by recursively dividing the range

 /// identified by max – min and putting the values computed into the given

 /// array.

 /// </summary>

 /// <param name="delta">lenght of the subarray in values that will be filled

 /// during the call of the method. </param>

 /// <param name="start">index of the first element of the subarray</param>

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 17

 /// <param name="midPoint">thresold value for the middle element</param>

 /// <param name="min">minimum thresold value</param>

 /// <param name="max">maximum thresold value</param>

 /// <param name="values">target array</param>

 protected void Rescale(int delta, int start,

 float midPoint, float min, float max, float[] values)

 { ... }

 }

}

Listing 3 - Class WarholFilter.

Listing 3 provides a summary view of the class. As it can be noticed by the included

namespaces there is nothing in this class that relates to any Aneka library. WarholFilter

simply defines the operation that is carried out by the AnekaThread instance when it is

excuted on the remote computation node. The relevant members of this class are the

following:

• WarholFilter.Image: this property is used to stored either the input or the output

bitmap of the filter. More precisely when an instance of WarholFilter is created

this property is set to the image that will be filtered. After the apply method is

called, this property references the filtered image.

• WarholFilter.Palette: this property references the palette that will be used to

remap the color values of the image. The WarholFilter class exposes four ready t

use palettes that contain combination of colors that are used in Andy Warhol's

paintings:

o WarholFilter.YellowGreenNavy

o WarholFilter.FuchsiaOrangeBlue

o WahrolFilter.FuchsiaGreenWhite

o WarholFilter.GreenOrangeGainsboro

These palettes will be used by WarholApplication to create the four images.

• WarholFilter.Apply(): this method performs some argument checking on the values

of the two properties and invokes WarholFilter.Filter to generate the processed

image whose color values are rescaled to the values in Palette.

It is not the purpose of this tutorial to dig into the details of the implementation of the

filter (a complete explanation of the filter is given into the comments in the code) but it is

worth estimating its complexity.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 18

4.3.1 Complexity Analysis

The computational complexity of the filter is located into the WarholFilter.Filter method

and it depends on two parameters: the size of the palette and the image dimension

(O(Lpal,Npx) where Lpal is the size of the palette and Npx the number of pixel of the image).

The steps involved into the filter as pointed out into the listing are the following:

• Step 1: sorting is made by using bubble sort (O(Lpal
2))

• Step 2: the entire image is scanned once (O(Npx))

• Step 3: the thresold computation is O(Lpal)

• Step 4: the entire image is scanned once and for each pixel the palette array is

scanned (O < O(Lpal x Npx))

The complexity of the filter has then an upper bound of K1(O(Lpal
2) + O(Lpal) + O(Npx)).

Since Lpal << Npx it is possible to identify an upper bound with K2O(Npx). This upper bound

is a rough estimation of the time required to perform one single filter. The

application requires four different samples of the filter. Hence we can easily

parallelize this step and reduce the overall computation time.

4.4 WarholApplication: Distributed Filtering Coordination

The WarholFilter application is responsible of coordinating the distributed execution of

the filters and composing their results together. It uses the services of the Thread Model

for parallelizing the computation and the services of WarholFilter class for performing the

single filtered components of the image. In this section we will describe in detail its

behavior.

// File: WarholApplication.cs

#region Namespaces

using System;

using System.Collections.Generic; // Ilist<...> class.

using System.Text; // StringBuilder class.

using System.IO; // IOException (IO Errors management)

using System.Drawing; // Image and Bitmap classes.

using Aneka.Entity; // Aneka Common APIs for all models

using Aneka.Threading; // Aneka Thread Model

using System.Threading; // ThreadStart (AnekaThread initialization)

#endregion

namespace Aneka.Examples.ThreadDemo

{

 /// <summary>

 /// Class WarholApplication. This class uses the Thread Model for performing

 /// the distributed filter on a given image and creating the Warhol Effect. It

 /// is responsible of managing the interaction with Aneka and controlling the

 /// execution of the distributed application by managinig the AnekaThread

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 19

 /// instances required to perform the filter.

 /// </summary>

 public class WarholApplication

 {

 #region Properties

 /// <summary>Path to the input file.</summary>

 protected string inputPath;

 /// <summary>Gets or sets the path to the input file.</summary>

 public string InputPath

 {

 get { return this.inputPath; }

 set

 {

 if ((value == null) || (value == string.Empty))

 {

 throw new ArgumentException("InputPath is null or empty",

 "InputPath");

 }

 this.inputPath = value;

 }

 }

 /// <summary>Path to the output file.</summary>

 protected string outputPath;

 /// <summary>Gets or sets the path to the output file.</summary>

 public string OutputPath

 {

 get { return this.outputPath; }

 set { this.outputPath = value; }

 }

 /// <summary>Path to the configuration file.</summary>

 protected string configPath;

 /// <summary>Gets or sets the path to the configuration file.</summary>

 public string ConfigPath

 {

 get { return this.configPath; }

 set { this.configPath = value; }

 }

 #endregion

 #region Implementation Fields

 /// <summary>

 /// Configuration settings for the Aneka application.

 /// </summary>

 protected Configuration configuration;

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// List containing the currently running AnekaThread instances.

 /// </summary>

 protected IList<AnekaThread> running;

 /// <summary>

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 20

 /// List containing the WarholFilter instances that have completed the

 /// execution.

 /// </summary>

 protected IList<WarholFilter> done;

 /// <summary>

 /// Number of columns that will compose the final image.

 /// </summary>

 protected int repeatX;

 /// <summary>

 /// Number of rows that will compose the final image.

 /// </summary>

 protected int repeatY;

 #endregion

 #region Public Methods

 /// <summary>Creates an instance of WarholApplication.</summary>

 public WarholApplication() {}

 /// <summary>Applies the filter.</summary>

 public void Run() { ... }

 #endregion

 #region Helper Methods

 /// <summary>

 /// Reads the configuration and initializes the AnekaApplication instance.

 /// </summary>

 protected void Init() { ... }

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void StartExecution(Bitmap source) { ... }

 /// <summary>

 /// Waits for the completion of all the threads and if some thread has

 /// failed its execution restarts it.

 /// </summary>

 protected void WaitForCompletion() { ... }

 /// <summary>

 /// Collects the processed images from each filter and composes them

 /// into a single image.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void ComposeResult(Bitmap source) { ... }

 /// <summary>

 /// Creates an array of WarholFilter instances each of them configured

 /// with the same input image and a different palette.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 /// <returns>Array of filters.</returns>

 protected WarholFilter[] CreateFilters(Bitmap source) { ... }

 /// <summary>

 /// Creates a file name by adding the given suffix to the given file name.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 21

 /// </summary>

 /// <param name="name">Source file name.</param>

 /// <param name="suffix">String suffix to append to the name.</param>

 /// <returns>A string containing the new file name.</returns>

 protected string GetNewName(string name, string suffix) { ... }

 #endregion

 }

}

Listing 4 - Class WarholApplication.

Listing 4 shows the content of the WarholApplication.cs file. This file contains the

definition of the WarholApplication class. We can inspect the code by first dividing the

content of the file in five sections delimited by the #region ... #endregion preprocessor

directives:

• Namespaces: this region includes all the required namespaces for developing the

application. Among the namespaces included three are of a particular interest:

o Aneka.Entity (Aneka.dll): This namespace contains the definition of the

base APIs common to all the models supported by Aneka. Inside this

namespace we can find the AnekaApplication class, the Configuration class,

the WorkUnit class, and all those types that are part of the core object

model. This namespace needs always to be include while developing

applications for Aneka.

o Aneka.Threading (Aneka.Threading.dll): This namespace contains the

definition of the APIs for the Thread Model. In particular it contains the

definition of the AnekaThread and the ThreadManager class. This

namespace needs to be included when developing applications based on the

Thread Model.

o System.Threading (System.dll): This namespace contains .NET Threading

APIs. When developing applications with the Thread Model it is necessary to

initialize AnekaThread instances with a ThreadStart object whose definition

is contained in the System.Threading namespace.

NOTE: The whole set of APIs of a model is generally organized into three

namespaces: Aneka.[model], Aneka.[model].Scheduling, and

Aneka.[model].Execution. These namespaces correspond to three

different assemblies named with the same convention. When developing

applications with a specific model it is generally required to include only

the first namespace, since the other two namespaces contain the

definition of server side components.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 22

The other namespaces that have been included into the file contains the definition

of support classes that have been used to program the WarholApplication class. For

example, since the class deals with images it is necessary to include the

System.Drawing (System.Drawing.dll) namespace.

• Properties: this region contains the three properties that constitute all the

parameters required to perform the filter. The path to the input image

(WarholApplication.InputPath), the path where to save the output image

(WarholApplication.OutputPath), and to the path configuration file

(WarholApplication.ConfigPath). The only mandatory parameter is the path to the

input image that must point to an existing file. The other two parameters are

configured with the default values if set to null.

• Implementation Fields: this region contains the declaration of the protected

members that are used to manage the application. There are five fields declared:

o Configuration configuration;

o AnekaApplication<AnekaThread, ThreadManager> application;

o IList<AnekaThread> running;

o IList<WarholFilter> done;

o int repeatX;

o int repeatY;

The first four fields constitute infrastructure that is generally required while

developing applications based on the Thread Model. As for any other model it is

necessary to create a AnekaApplication instance that represents the local view of

the distributed application. Since AnekaApplication is a generic type it needs to be

specialized by using the components that identify the model we use. In this case

we will use a AnekaApplication<AnekaThread, ThreadManager> instance, that

specializes the behaviour of AnekaApplication for the Thread Model. The

AnekaApplication class is initialized with a set of configuration parameters that are

stored in the Configuration class. This class allows to customize the behavior of

AnekaApplication instances. Moreover, two additional data structures are required:

a list containing the running AnekaThread instances and done list containing the

filter instances that have completed their execution. It can be noticed that running

is a list of AnekaThread instances while done is a list of WarholFilter instances. The

reason for this is because while the thread is running we need to keep a reference

to it in order to join the thread and checks its state. Once a thread has completed

its execution there is no more need to store a reference to it but we simply keep

the WarholFilter instance connected to the thread that is accessible by the

AnekaThread.Target property.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 23

Two more fields have been defined: repeatX and repeatY. These fields are specific

to the application we are developing and maintain the information about the

number of columns and rows that compose the final image.

• Public Methods: the public methods of the class are its default constructor and the

Run method that starts the execution of the filter. The content of this method will

be analyzed in detail in the next section.

• Helper Methods: in order to make the more understandable the code, the body of

the Run method has been divided into logical steps that have been encapsulated

into helper methods. In particular we can identify four major steps:

o WarholApplication.Init: initializes the AnekaApplication instance with the

selected Configuration instance.

o WarholApplication.StartExecution: initializes the running and done lists,

creates the AnekaThread instances, and starts their execution.

o WarholApplication.WaitForCompletion: waits for the completion of all the

AnekaThread instances in the running list and eventually restarts their

execution if they failed. When this method returns, the running list is empty

and the done list contains the reference to the WarholFilter instances

created.

o WarholApplication.ComposeResult: iterates on the done list and compose

the final output image by arranging the filtered bitmaps into an image with

repeatX columns and repeatX rows. This method saves the output bitmap

into the WarholApplication.OutputPath if set, otherwise it generates a new

name as described in Section 4.2.

This region contains two more methods that are invoked by the previous one that

are in charge of creating the list of different filters that will be applied to the

image (WarholApplication.CreateFilters) and of generating a new name for the

output file (WarholApplication.GetNewName).

In the following we will explore in more details the single steps of the application.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 24

 /// <summary>

 /// Applies the filter.

 /// </summary>

 public void Run()

 {

 if (File.Exists(this.inputPath) == false)

 {

 throw new FileNotFoundException("InputPath does not exist.",

 "InputPath");

 }

 try

 {

 // Initializes the AnekaApplication instance.

 this.Init();

 // read the bitmap

 Bitmap source = new Bitmap(this.inputPath);

 // create one filter for each of the four slices that will

 // compose the final image and starts their execution on

 // Aneka by wrapping them into AnekaThread instances...

 this.StartExecution(source);

 // wait for all threads to complete...

 this.WaitForCompletion();

 // collect the processed images and compose them

 // into one single image.

 this.ComposeResult(source);

 }

 finally

 {

 // we ensure that the application closes properly

 // before leaving the method...

 if (this.application != null)

 {

 if (this.application.Finished == false)

 {

 this.application.StopExecution();

 }

 }

 }

 }

 }

}

Listing 5 - Run() method.

Listing 5 reports the content of the Run method. As we can notice body of the method

sequentially calls the logical steps identified before and ensures that the application

instance is closed if some error occurs. In the finally block we simply check that

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 25

application instance is not null and whether it has completed its execution by looking at

the AnekaApplication<W,M>.Finished property. If the application is not finished, the

AnekaApplication<W,M>.StopExecution() method is invoked to terminate its execution.

We can now explore the single steps and see how to set up the AnekaApplication instance

and configure it for its execution.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// Reads the configuration and initializes the AnekaApplication

 /// instance.

 /// </summary>

 protected void Init()

 {

 Configuration configuration = null;

 if (string.IsNullOrEmpty(this.configPath) == true)

 {

 this.configuration = Configuration.GetConfiguration(();

 }

 else

 {

 this.configuration =

Configuration.GetConfiguration(this.configPath);

 }

 // we set this force to false because

 // we want to handle the resubmission

 // of failed threads.

 this.configuration.SingleSubmission = false;

 // we initialize the AnekaApplication instance with the

NOTE: The lines of code contained in the finally block identify a

common programming pattern for all the models supported by Aneka.

This pattern ensures the resources allocated by the AnekaApplication

instance are properly released and no work unit is left running on Aneka.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 26

 // selected configuration object and the components required

 // for the Thread Model

 this.application =

 new AnekaApplication<AnekaThread,

ThreadManager>(this.configuration);

 }

}

Listing 6 - Init() method.

Listing 6 reports the body of the Init method. The method performs to very basic steps:

• Configuration setup: if the configuration path has been the static method

Configuration.GetConfiguration(string) is invoked to read to read the information

form the given file. If the configuration path has not been set, the static method

Configuration.GetConfiguration() is called. This method will first look for the

default configuration file (in this case: warholizer.exe.config) and if not found it

will create a default configuration object. The default values for the Configuration

class can been seen in the conf.xml file (see Figure 5). Once the configuration

instance has been created the value of SingleSubmission is set to false. The reason

for this is because in case some threads are failed they will be restarted again.

• AnekaApplication initialization: this step is accomplished by simply initializing the

application field and passing as parameter the Configuration object that has been

obtained at the previous step. Since the AnekaApplication class is a generic type its

initialization implies specifying the actual types used by the application. In the

case of the Thread Model we will specialize the AnekaApplication class by using

AnekaThread in place of the WorkUnit and ThreadManager in place of

IApplicationManager.

NOTE: The Thread Model is naturally based on the coordinated

execution of remotely executable threads that can be started at any

time. The SingleSubmission property forces the behavior of the

AnekaApplication to a single submission of all the AnekaThread

instances that have been explicitly added to the AnekaApplication

before calling the method AnekaApplication.SubmitExecution. Since

with the Thread Model the AnekaThread instances are not explicitly

added to the AnekaApplication setting SingleSubmission to true would

lead to an unexpected behaviour and it could cause the premature

termination of the application. This problem is even worse when we

want to handle the resubmission of the failed threads. It is then a

general recommendation to not to use SingleSubmission set to true

when using the Thread Model.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 27

The next step of the process is performed by the WarholApplication.StartExecution

method that takes as input the Bitmap instance read from the input file and creates

the AnekaThread instances as described in Listing 7.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Application instance that interfaces the client with Aneka.

 /// </summary>

 protected AnekaApplication<AnekaThread, ThreadManager> application;

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void StartExecution(Bitmap source)

 {

 this.running = new List<AnekaThread>();

 WarholFilter[] filters = this.CreateFilters(source);

 // creates an AnekaThread for each filter

 foreach (WarholFilter filter in filters)

 {

 AnekaThread thread = new AnekaThread(new

 ThreadStart(filter.Apply), this.application);

 thread.Start();

 this.running.Add(thread);

 }

 }

 }

}

Listing 7 - StartExecution(Bitmap) method.

The interesting bits in this method are concentrated within the foreach loop. For each

WarholFilter instance that has been created a new instance of AnekaThread is initialized

and configured to run the WarholFilter.Apply method. Each AnekaThread also need to

have a reference to the AnekaApplication it belongs to. The second statement simply

starts the execution of the AnekaThread instance by calling AnekaThread.Start().

These two statements constitute the common operations required to configure and start a

AnekaThread instance. We also add this instance to the list of running threads in order to

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 28

keep track of its reference and being able to get the results once the AnekaThread has

completed its execution.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 protected void WaitForCompletion()

 {

 this.done = new List<WarholFilter>();

 bool bSomeToGo = true;

 while (bSomeToGo == true)

 {

 foreach (AnekaThread thread in this.running)

 {

 thread.Join();

 }

 for (int i = 0; i < this.running.Count; i++)

 {

 AnekaThread thread = this.running[i];

 if (thread.State == WorkUnitState.Completed)

 {

 this.running.RemoveAt(i);

 i--;

 WarholFilter filter = (WarholFilter) thread.Target;

 this.done.Add(filter);

 }

 else

 {

 // it must be failed...

 thread.Start();

 }

 }

 bSomeToGo = this.running.Count > 0;

 }

 }

 }

}

Listing 8 - WaitForCompletion() method.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 29

This method exposes another classic synchronization pattern that is used while creating

multi-threaded applications: threads synchronization. In this specific case we simply want

to implement a barrier for all threads. This can be easily done by calling the

AnekaThread.Join() method on all the instances that we have started and that are

contained in the running list.

The method uses a while loop that will terminate once all the results have been collected.

Inside the while loop two basic steps are performed:

• Wait for thread completion: the method invoke the AnekaThread.Join() method on

all the threads contained in the running list. This call makes the application to wait

until the thread terminate.

• Check thread results: once all the threads have terminated we iterate again the

running list to check whether some thread has failed its execution or not by looking

at the State property. If the thread has successfully completed its execution its

state is set to WorkUnitState.Completed. In this case we simply remove the thread

from the running list and add WarholFilter instance referenced by the

AnekaThread.Target property into the done list. If the other cases the thread is

simply restarted.

The loop terminates when the running list is empty. This means that all the threads have

successfully completed their execution and all the filters have been collected into the

done list.

namespace Aneka.Examples.ThreadDemo

{

 public class WarholApplication

 {

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void ComposeResult(Bitmap source)

 {

 Bitmap output = new Bitmap(source.Width * this.repeatX,

 source.Height * this.repeatY,

 source.PixelFormat);

 Graphics graphics = Graphics.FromImage(output);

 int row = 0, col = 0;

 foreach (WarholFilter filter in this.done)

 {

 graphics.DrawImage(filter.Image, row * source.Width,

 col * source.Height);

 row++;

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 30

 if (row == this.repeatX)

 {

 row = 0;

 col++;

 }

 }

 graphics.Dispose();

 if (string.IsNullOrEmpty(this.outputPath) == true)

 {

 this.outputPath = this.GetNewName(this.inputPath, "warhol");

 }

 output.Save(this.outputPath);

 }

}

Listing 9 - ComposeResult(Bitmap) method.

The next logical step is constituted by the processing of the result and the creation of the

final output image. These tasks are accomplished into the AnekaThread.ComposeResult

method whose content is reported in Listing 9. The interesting bits in this method are

concentrated within the foreach loop. For each WarholFilter instance that is contained

into the done list the processed image exposed by the WarholFilter.Image property is

drawn into the final output image in the position identified by the row and col local

variables. The member field repeatX is used to identify the end of a line and move to the

next colum.

After the output bitmap has been composed it is saved to the file pointed by OutputPath

property or to an automatically generated file name by invoking the

WarholApplication.GetNewName method.

namespace Aneka.Examples.ThreadDemo

{

 ...

 public class WarholApplication

 {

 /// <summary>

 /// Creates an array of WarholFilter instances each of them configured

 /// with the same input image and a different palette.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 /// <returns>Array of filters.</returns>

 protected virtual WarholFilter[] CreateFilters(Bitmap source)

 {

 WarholFilter[] filters = new WarholFilter[4];

 WarholFilter one = new WarholFilter();

 one.Image = source;

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 31

 one.Palette = WarholFilter.FuchsiaGreenWhite;

 filters[0] = one;

 WarholFilter two = new WarholFilter();

 two.Image = source;

 two.Palette = WarholFilter.YellowGreenNavy;

 filters[1] = two;

 WarholFilter three = new WarholFilter();

 three.Image = source;

 three.Palette = WarholFilter.FuchsiaOrangeBlue;

 filters[2] = three;

 WarholFilter four = new WarholFilter();

 four.Image = source;

 four.Palette = WarholFilter.GreenOrangeGainsboro;

 filters[3] = four;

 this.repeatX = 2;

 this.repeatY = 2;

 return filters;

 }

 }

}

Listing 10 - CreateFilters(Bitmap) method.

The last method that we want to explore is the WarholApplication.CreateFilters method

that is responsible of creating all the filter instances and define the number of rows and

columns into which the final image will be organized. By separating the creation of filters

into this method we can easily customize the output image by simply overriding this

method and, for example, creating a final image that is composed by 9 samples of the

original images or simply changing the colors of the palette.

4.5 Program: Putting all together

The program class implements a simple command line parser that reads the arguments of

given by the user, checks whether they are correct, configures the WarholApplication

class and starts the execution of the filter by invoking the Run() method. If the user has

not provided the right parameters a simple command line help is show.

The class defines only two static methods: one is the entry point of the application

(Program.Main(string[])) and the other one shows the command line help

(Program.ShowHelp()).

using Aneka;

// File: Program.cs

namespace Aneka.Examples.ThreadDemo

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 32

{

 /// <summary>

 /// Class Program. Virtualizes the execution of WarholFilter by using the

 /// Thread Model. This class simply parses the command line arguments

passed

 /// to the process and sets up the WarholApplication.

 /// </summary>

 public class Program

 {

 /// <summary>

 /// Creates an array of WarholFilter instances each of them configured

 /// with the same input image and a different palette.

 /// </summary>

 /// <param name="args">Command line arguments.</param>

 static void Main(string[] args)

 {

 try

 {

 Logger.Start();

 if (args.Length >= 2)

 {

 string inputFile = args[0];

 string outputFile = args[1];

 string confFile = null;

 if (File.Exists(inputFile) == false)

 {

 Console.WriteLine("warholizer: [ERROR] input file" +

 "[{0}] not found. EXIT.",

inputFile);

 return;

 }

 else

 {

 // the infput file exists...

 // now we check for the configuration file.

 if (args.Length == 3)

 {

 confFile = args[2];

 if (File.Exists(confFile) == false)

 {

 Console.WriteLine("warholizer: [ERROR] " +

 "configuration file [{0}] not found.

EXIT",

 inputFile);

 return;

 }

 }

 // now we check for the out file to simply issue

 // a warning if the file exists...

 if (File.Exists(outputFile) == true)

 {

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 33

 Console.WriteLine("warholizer: [WARNING] output

 file"

 + " [{0}] already exists and it will be

 overwritten.",

 inputFile);

 }

 }

 // ok at this point we have the following conditions

 // 1. inputPath exists

 // 2. confFile exists

 // we can start the application..

 WarholApplication app = new WarholApplication();

 app.InputPath = inputFile;

 app.OutputPath = outputFile;

 app.ConfigPath = confFile;

 try

 {

 app.Run();

 }

 catch (Exception ex)

 {

 Console.WriteLine("warholizer: [ERROR] exception:");

 Console.WriteLine("\tMessage: " + ex.Message);

 Console.WriteLine("\tStacktrace: " + ex.StackTrace);

 Console.WriteLine("EXIT");

 IOUtil.DumpErrorReport(ex, "Aneka Thread Demo – Error

 Log");

 }

 }

 else

 {

 Program.ShowHelp();

 }

 }

 finally

 {

 Logger.Stop();

 }

 }

 /// <summary>

 /// Shows a command line help about the usage of the application.

 /// </summary>

 static void ShowHelp() { }

 }

}

Listing 11 - Program class.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 34

It is important to notice that each application using the Aneka APIs requires a basic try {

.... } catch { ... } finally { ... } block that is used to ensure a proper initialization of the

environment as well as a proper release of resources. In particular the it is necessary to

perform the following steps:

• Initialize the Logger class at the beginning of the try {...} block. This operation

activates the logger and all the resources required to provide a solid and reliable

logging. This operation is generally not required because the logger will

automatically initialize at the first call but it is a good practice to explicitly call

the logger.

• Provide a catch block intercepting all the exceptions occuring in the main thread.

It is possible to use the IOUtil.DumpErrorReport(....) method to properly log the

content of the exception to a file. The method provides different overloads that

allow users to specify for example an header or the name of the log file. The

version used in the example creates a log file named error.YYYY-MM-DD_HH-

mm-ss.log to the application base directory.

• Finalize the logger in the finally {...} block by calling Logger.Stop().This operation

ensures that all the resources required by the logging are properly released and

that there are no threads still running at the end of the application.

4.6 Compiling and building the Application

4.6.1 Building the demo in Visual Studio 2005

It is possible to build and run the application by simply opening the Visual Studio 2005

Project ThreadDemo.csproj in the ThreadDemo directory and build the project. Visual

Studio will created the executable warholizer.exe along with all the libraries required to

run in the ThreadDemo\bin\Debug directory (Configuration: Debug).

Visual Studio 2005 will also copy the conf.xml and the marilyn.jpg file into the bin\Debug

directory of the application. These two files can be used to test the execution of the

application.

NOTE: among all the three operations listed above the most

important one is the finalization of the logger. The Logger is a static

class that provides logging capabilities to all the components of Aneka

and uses an asynchronous model to log messages and raise log events.

If the user forgets to call Logger.Stop() the thread used to raise log

events will keep running thus preventing the termination of the

application. It is a safe practice to put this operation within a finally

block so that it is ensured that it is executed.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 35

4.6.2 Building the demo from the command line

If you do not have the Visual Studio 2005 installed but you have c# 2.0 compiler (let us

assume that the compiler is the one shipped with .NET framework SDK and that is called

cs.exe) it is possible to compile the application from the command line.

Dependencies

The first step that is required is identifying the dependencies that this application relies

on to execute:

1. Most of the support classes that we have used to build the application are defined

in the System.dll assembly that is referenced by default and contained in the

Global Assembly Cache (GAC).

2. To perform the operations on the images we have used the Bitmap class which is

defined in the System.Drawing namespace (GAC: System.Drawing.dll).

3. In order to use the Thread Model we used the types defined in the Aneka.Threading

namespace that is implemented in the Aneka.Threading.dll.

4. Any application that uses the Aneka APIs has an implicit dependency on the

following assemblies:

a. Aneka.dll (Namespaces: Aneka, Aneka.Entity, Aneka.Security)

b. Aneka.Data.dll (Namespaces: Aneka.Data, Aneka.Data.Entity)

c. Aneka.Util.dll (Namespace: Aneka (utility classes))

The complete set of dependencies is then given by: System.dll, System.Drawing.dll,

Aneka.dll, Aneka.Threading.dll, Aneka.Data.dll, Aneka.Util.dll. We can find the libraries

that relate to Aneka into the [Aneka Installation Directory]\bin directory. The easiest

thing to do is then copy these libraries to the ThreadDemo directory. The other two

libraries are registered in the GAC, hence we do not need to copy them.

Compilation

Once we have copied the required libraries into the ThreadDemo directory we can invoke

the C# 2.0 compiler to compile the three files (WarholFilter.cs, WarholApplication.cs, and

Program.cs) that compose the application with the following command line:

csc /r:System.dll /r:System.Drawing.dll /r:Aneka.dll

/r:Aneka.Data.dll /r:Aneka.Util.dll /r:Aneka.Threading.dll

/t:exe /out:warholizer.exe Program.cs WarholFilter.cs

WarholApplication.cs

The compilation process will create the warholizer.exe executable in the ThreadDemo

directory.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 36

4.6.3 Running the application

In order to run the application it is necessary to connect to have Aneka installed either on

the local machine or on a remote machine that can be reached through a TCP connection.

We assume, for the sake of simplicity, that Aneka is running on the local machine with the

default installation (port: 9090). In this case we can simply run test the application by

running the from the command line the following:

warholizer.exe marilyn.jpg

This application will produce the file marilyn_warhol.jpg in the same directory. We can

also provide a different name (for example foo.jpg) of the output file by executing the

follwing:

warholizer.exe marilyn.jpg foo.jpg

If we need to customize the way in which the application connects to Aneka. We can

simply edit the configuration file conf.xml (for example we need to change the address

where the application should connect) and run the following:

warholizer.exe marilyn.jpg foo.jpg conf.xml

Figure 6 shows the input file and a possible outcome of the execution of warholizer on the

given input file.

Figure 6 - Input (left) and output (right) images (not in original sizes).

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 37

5 File Management

The Aneka application model introduced in Section 2 also allows the management of files

that might be of support for its execution or an outcome of the execution of threads.

Specifically files can be:

• Common files required by all the tasks of the application.

• Input files for specific threads.

• Output files of specific threads.

As it can be noticed there is no concept of output file for the entire application.

In order to show how to take advantage of the file management features implemented in

Aneka we will modify the current example and we will introduce explicit file

management. In particular we will demonstrate how to add files that are of use for the

entire application and how to manage input and output files for single thread instances.

5.1 Aneka File APIs

Aneka encapsulates the required information about a file into the

Aneka.Data.Entity.FileData class that is defined in the Aneka.Data.dll. This class is used

to represent all the different kind of files that are managed by Aneka.

Listing 12 provides an overall view of the properties of interest for the FileData class and

the related enumeration. In the listing, only the properties that are important from an

user point of view have been reported.

namespace Aneka.Data.Entity

{

 /// <summary>

 /// Enum FileDataAttributes. Describes the different set of attributes that a

 /// a FileData instance can have. Attributes are used to convey additional

 /// information about the file.

 /// </summary>

 [Flags]

 public enum FileDataAttributes

 {

 /// <summary>

 /// No Attributes.

 /// </summary>

 None = 0,

 /// <summary>

 /// The file is located into the file system of the Aneka application and

 /// not stored in a remote FTP server.

 /// </summary>

 Local = 1,

 /// <summary>

 /// The file is transient and does not represent neither an input file nor

 /// a final output file. At the moment this attribute is not used.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 38

 /// </summary>

 Transient = 2,

 /// <summary>

 /// The file is optional. This attribute only makes sense for output files

 /// and notifies Aneka that the file might or might not be produced by a

 /// task as outcome of its execution.

 /// </summary>

 Optional = 4

 }

 /// <summary>

 /// Enum FileDataAttributes. Describes the different set of attributes that a

 /// a FileData instance can have. Attributes are used to convey additional

 /// information about the file.

 /// </summary>

 [Flags]

 public enum FileDataType

 {

 /// <summary>

 /// No type, not used.

 /// </summary>

 None = 0,

 /// <summary>

 /// The file is an input file to a specific WorkUnit.

 /// </summary>

 Input = 1,

 /// <summary>

 /// The file is an output file to a specific WorkUnit.

 /// </summary>

 Output = 2,

 /// <summary>

 /// The file is a common input file to the application and it will be

 /// available as input to all the WorkUnit.

 /// </summary>

 Shared = 4,

 /// <summary>

 /// This is just the sum of all the values of the enumeration.

 /// </summary>

 All = Input + Output + Shared

 }

 /// <summary>

 /// Class FileData. Represents a generic file in the Aneka application model.

 /// Within Aneka files are automatically moved to execution nodes and collected

 /// back to the client manager once the WorkUnit instances are completed

 /// successfully. The properties exposed by this class allow Aneka to automate

 /// file management and make it transparent to the user.

 /// </summary>

 [Serializable]

 public class FileData

 {

 /// <summary>

 /// Gets or sets the full path to the file.

 /// </summary>

 public string Path { get { ... } set { ... } }

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 39

 /// <summary>

 /// Gets or sets the path that the file will have to the remote execution

 /// node. This property is mostly of concern for Input and Output files

 /// since shared files are generally placed where Aneka requires them.

 /// </summary>

 public string VirtualPath { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the name of the file. The name is kept separate from the

 /// path because instances of FileData can be used in a cross-platform

 /// environment where the interpretation of the path differs from node to

 /// node.

 /// </summary>

 public string FileName { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets a string representing the unique identifier of the owner

 /// of the file. The owner can be a specific WorkUnit or the Application

 /// instance. In the first case the file is an Input or an Output file,

 /// in the second case it is a Shared file.

 /// </summary>

 public string OwnerId { get { ... } set { ... } }

 /// <summary>

 /// Gets a boolean value indicating whether the file is local to the file

 /// file system of the application or located in a remote storage

 /// facility.

 /// </summary>

 public bool IsLocal { get { ... } }

 /// <summary>

 /// Gets or sets the type of the file.

 /// </summary>

 public FileDataType Type { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the collection of attributes that are attached to the

 /// FileData instance.

 /// </summary>

 public FileDataAttributes Attributes { get { ... } set { ... } }

 }

}

Listing 12 - FileDataAttributes, FileDataType, and FileData.

A file in Aneka is identified by the following combination of values: OwnerId, Type,

Path/VirtualPath. An OwnerId identifies the owner of the file, which represents the entity

(WorkUnit or Application) that requires or produces the file. In most of the cases, the user

will not be asked to provide this information that is automatically added while adding files

to the WorkUnit instances or to the collection of the shared files of the application. Of

major importance are the Type and Path/VirtualPath propeties.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 40

5.1.1 File Types

The Type property is used to express the nature of the file, which determines how Aneka

manages. Three types are used by the user:

• FileDataType.Shared: this is an input file to the entire application and its absence

prevents the execution of the application itself. Shared files are meant to be

available to all the WorkUnit instances that the application is composed of.

• FileDataType.Input: this is an input file to a specific WorkUnit and its absence

prevents that specific WorkUnit to be executed, causing its failure.

• FileDataType.Output: this is an output file of a specific WorkUnit. If the file it is

not produced as outcome of the execution of the WorkUnit and it is not marked as

optional the corresponding WorkUnit is considered failed.

Shared and Input files are automatically moved from their origin (the local file system to

the application or a remote file server) to the execution node of the WorkUnit and the

user does not need to pre-upload files. Output files are moved from the execution node

to the local file system or a remote file server once the WorkUnit has completed its

execution or aborted. In this second case Aneka will look at the expected output files and

will collect only those that have been generated.

5.1.2 Path vs VirtualPath, and FileName

The management of files is completed by the information given through the Path,

VirtualPath, and FileName properties. These three values help the framework to locate

the file during all the life-cycle of the application. At first we can distinguish two major

contexts: the execution node and the external world. In the execution context the

FileData instance is identified and located by looking at the VirtualPath property, whereas

in the external world (should this be the user local file system or a remote file server) the

Path property is used to locate the file.

The reason why there are two distinct properties is because this allows the user to change

the name of files and provides an higher degree of flexibility in managing files. Moreover,

there could be some legacy applications that produce file in a specific path and whose

behavior cannot be changed; when these applications are executed within Aneka the

framework should still be able to properly collect the files. The value of the virtual path is

automatically inferred is left unspecified by the user.

In addition, a specific property has been designed for keeping the file name. The reason

for this, is because Aneka has been designed to run on an cross-platform environment in

which the interpretation of the path information is not uniform and might lead to not

properly locating files. By keeping the name separate from the path the framework will

always be able to collect the file.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 41

5.1.3 File Attributes

Aneka allows to attach additional information to the FileData instance to simplify the

management of files and provide advanced features such as pulling and pushing files from

remote FTP servers or by means of other kind of protocols.

The Attributes property contains the collection of attributes attached to the file, which

are defined by the FileDataAttributes enumeration. Among all the available attributes

there are only two, which are of interest for the user:

• FileDataAttributes.IsLocal: this attribute is set by default when creating a FileData

instance and it identifies the corresponding file as belonging to the local file

system of the application. Local input files are pushed into the Aneka storage

facility from the client computer, while local output files are downloaded into the

client computer once the WorkUnit that produced them has completed. If a file is

not local it resides on a remote storage and Aneka will pull input files from the

remote storage, and push output files to the remote storage.

• FileDataAttributes.Optional: this attribute is mostly related to output files and

identifies files that might (or might not) be produced as outcome of the execution

of a WorkUnit. By setting this attribute, a WorkUnit is not considered failed is

some (or all) of these files are not present in the remote execution node.

Other attributes are internally used are not of interest from a user point of view.

NOTE: In case of remote file it is important to provide the Aneka runtime will

all the information necessary to pull the files into the Aneka Storage facility.

Such information can be saved into the Aneka configuration file under the

property group “StorageBuckets”. A storage bucket is a collection of properties

in the form of name-value pairs that are helpful to connect to a remote storage

server and upload/download a file. In the case of an FTP storage the user name

and password are be required. Each storage bucket is identified by a name that

is used by the FileData instance to map a remote file with the required

credentials to access the remote storage: the FileData.StorageBucketId

property will store the name of the corresponding storage bucket for remote

files.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 42

5.2 Providing File Support for Aneka Applications.

The AnekaApplication class and the WorkUnit class provide users with facilities for

attaching files that are required by the application. This can be done either by creating

FileData instances or by simply providing the file name and the type. The use of FileData

instances is more appropriate in cases where it is necessary to differentiate the path from

the virtual path, or whether we need to map a remote file.

5.2.1 Adding Shared Files

Listing 13 shows how to add shared files to the application by either providing only the file

name or a FileData instance. It is possible to specify a full path for the file, in case no

path is given the file will be searched in the current directory. It is important to notice

that in case the user decide to provide a FileData instance the value of the OwnerId and

the Type property will be overridden with the values shown the listing, which are the

application unique identifier and the FileDataType.Shared type respectively.

 /// <summary>

 /// Reads the configuration and initializes the AnekaApplication instance.

 /// </summary>

 protected void Init()

 {

 if (string.IsNullOrEmpty(this.configPath) == true)

 {

 this.configuration = Configuration.GetConfiguration(();

 }

 else

 {

 this.configuration =

Configuration.GetConfiguration(this.configPath);

 }

 // we set this force to false because

 // we want to handle the resubmission

 // of failed threads.

 this.configuration.SingleSubmission = false;

 // we turn off the ShareOutputDirectory property

 // we will explain this later..

 this.configuration.ShareOutputDirectory = false;

 // we initialize the AnekaApplication instance with the

 // selected configuration object and the components required

 // for the Thread Model

 this.application =

 new AnekaApplication<AnekaThread, ThreadManager>(this.configuration);

 // we add the application input file as a shared file

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 43

 // because we need to have the file available for all

 // the threads..

 this.application.AddSharedFile(this.inputPath);

 // NOTE:

 // alternatively we can explicitly create a FileData instance as

 // follows and add it

 // FileData shared = new FileData(this.application.Id, this.inputPath,

 // FileDataType.Shared);

 // this.application.AddSharedFile(shared);

 }

Listing 13 - Adding shared files to an Aneka application.

In this example, we have provided the application with the input image that will be

processed by all the threads. This file will be available on the remote execution node

of each of the threads composing the application.

5.2.2 Adding Input and Output Files

In order to leverage files for image processing instead of Image instances we need to

change the interface of the WarholFilter class by replacing the Image property with two

string properties representing the input file required by the filter and the output file name

generated as a result of the processing. Listing 14 shows the changes that have to be

applied to the WarholFilter class.

 // /// <summary>

 // /// Input/Output bitmap.

 // /// </summary>

 // protected Bitmap image;

 // /// <summary>

 // /// Gets, sets the input image on which the filter is applied. This

 // /// property stores the filtered bitmap after the Apply() method is

 // /// called.

 // /// </summary>

 // public Bitmap Image

 // { get { return this.image; } set { this.image = value; } }

 /// <summary>

 /// input file.

 /// </summary>

 protected string input;

 // /// <summary>

 // /// Gets, sets the input file name of the source image for the filter.

 // /// </summary>

 public string InputFile

 { get { return this.input; } set { this.input = value; } }

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 44

 /// <summary>

 /// output file.

 /// </summary>

 protected string output;

 // /// <summary>

 // /// Gets, sets the output file name of the result image.

 // /// </summary>

 public string OutputFile

 { get { return this.output; } set { this.output = value; } }

Listing 14 - Adding shared files to an Aneka application.

Listing 15 shows how to add an output file to a thread instance. As reported, the process

of adding an input file is exactly the same. The AddFile method provides a different

overload allowing to specify the FileData instance as parameter. It is important to

remember that the value of the OwnerId that needs to be passed is the identifier of the

thread instance. In any case the method will override the property value so that it

matches the identifier of the thread instance. Moreover, the WorkUnit class also exposes

the InputFiles and OutputFiles collections (IList<FileData>) where the user can directly

add FileData instances.

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void StartExecution(Bitmap source)

 {

 this.running = new List<AnekaThread>();

 WarholFilter[] filters = this.CreateFilters(source);

 // initialize a counter to create output names.

 int i = 0;

 // creates an AnekaThread for each filter

 foreach (WarholFilter filter in filters)

 {

 AnekaThread thread = new AnekaThread(new ThreadStart(filter.Apply),

 this.application);

 // we set the input and the output file names so that the filter

 // instance can know which file to read and to write. For both

 // files we only need the name of the file because they will be

 // the current execution directory.

 filter.InputFile = Path.GetName(this.inputPath);

 filter.OutputFile = this.GetNewName(filter.InputFile,

i.ToString());

 // we add the output file to the thread, in this case we do not need

 // any input file because the image to process is a shared file and

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 45

 // it becomes an input file by default.

 // In order to add an input file we can change the value of the

 // FileDataType enumeration to Input.

 thread.AddFile(filter.OutputFile, FileDataType.Output,

 FileDataAttributes.Local);

 thread.Start();

 this.running.Add(thread);

 // we increment the counter so that we can dreate different output

 // file names (one for each thread instance)

 i++;

 }

 }

Listing 15 - Adding input and output files to tasks.

5.2.3 Using Files on the Remote Execution Node

In the previous steps we have modified the source code of the example for providing the

application and the thread instances with input files and collecting output files. Both

shared and input files will be located in the current execution directory of the thread

instance that will also be the destination path of the output file. We will now change the

code of the WarholFilter.Apply method in order to read and write files instead of using

the in-memory representation of the image.

 /// <summary>

 /// Applies the filter.

 /// </summary>

 public void Apply()

 {

 // NOTE: this is the old code leveraging the in memory representation

 // of the image.

 //

 // if (this.image == null)

 // {

 // throw new ArgumentNullException("Image is null!", "image");

 // }

 if (this.palette == null)

 {

 throw new ArgumentNullException("Palette is null!", "palette");

 }

 Bitmap source = new Bitmap(this.input);

 Bitmap result = this.Filter(source, this.palette);

 result.Save(this.output);

 // NOTE: this is the old code leveraging the in memory representation

 // of the image.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 46

 //

 // this.image = this.Filter(this.image, this.palette);

 }

Listing 16 - Reading and writing input and output files on the remote node.

As it can be noticed from the listing, there is no specific operation that has to be

performed inside the method to access the input and shared files or to write output files.

In this case we simply need to create an in memory representation of the input image and

once the filtered image is created save with the selected file name for the output file.

5.2.4 Collecting Local Output Files

Once the thread has completed it is possible to access the content of local output file

from the file system local to the user. The value of the Path property and the

configuration settings of the Aneka application will determine the location of the output

file.

If the Path property contains a rooted path, this will be location where the file will be

found. Otherwise, the file will be stored under the application working directory that is

represented by Workspace property of the Configuration class. In this directory, a

subdirectory whose name is represented by the Home property of the application instance

will be created to store all the output files. Since it might be possible that all the output

files produced by different threads could have the same name, Aneka allows to store the

content of each WorkUnit instance in a separate directory that is named after the

WorkUnit.Name property. This value is automatically filled when the user creates an

AnekaTask instance and is in the form “Thread-N” where N is a sequential number. By

default Aneka saves the output of each thread instance in a separate directory, in order to

turn off this feature it is sufficient to set the value of Configuration.ShareOuput-Directory

to false.

In the current example, we have given a different name to each output file. Hence, there

is no need to save the results in a separate directory and we can set the value of

Configuration.ShareOutputDirectory to false.

Finally, if the value of Configuration.Workspace is not set, the default working directory is

taken as reference directory.

 /// <summary>

 /// Starts the execution of the distributed application by creating the

 /// filters wrapping them into AnekaThread instances and starting their

 /// execution.

 /// </summary>

 /// <param name="source">Source bitmap.</param>

 protected void ComposeResult(Bitmap source)

 {

 Bitmap output = new Bitmap(source.Width * this.repeatX,

 source.Height * this.repeatY,

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 47

 source.PixelFormat);

 Graphics graphics = Graphics.FromImage(output);

 int row = 0, col = 0;

 // we collect the value of the output directory of the application.

 string outputDir = Path.Combine(this.configuration.Workspace,

 this.application.Home);

 foreach (WarholFilter filter in this.done)

 {

 // NOTE: old code, we now read the processed image from the

 // output files attached to the filter.

 //

 // graphics.DrawImage(filter.Image, row * source.Width,

 // col * source.Height);

 string outputFile = Path.Combine(outputDir, filter.OutputFile);

 Bitmap image = new Bitmap(outputPath);

 graphics.DrawImage(image, row * source.Width, col * source.Height);

 row++;

 if (row == this.repeatX)

 {

 row = 0;

 col++;

 }

 }

 graphics.Dispose();

 if (string.IsNullOrEmpty(this.outputPath) == true)

 {

 this.outputPath = this.GetNewName(this.inputPath, "warhol");

 }

 output.Save(this.outputPath);

 }

 ...

Listing 17 - Accessing output files on the user local file system.

Listing 17 shows how to collect the information about the location of the output file in the

user local file system. As previously mentioned the location of the local output files is

influenced mostly by the configuration settings. In the example discussed being all the

output files different in names we can instruct Aneka to store them in the same directory.

The changes applied to the ComposeResult method simply locate the output files and read

the corresponding Bitmap instance in order to compose and save the final image.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 48

5.3 Observations

This section has provided an overview of the support for file management in Aneka.

Differently from other distributed computing middlewares, Aneka automates the

movement of files to and from the user local file system or remote storage servers to the

Aneka internal storage facility. The major reason behind this design decision is simplify as

much as possible the user experience and to automate those task that do not really

require the user intervention.

The basic features of file management in Aneka have been demonstrated by modifying the

discussed example in order to support shared, input and output files. The example

includes only files that belong or will be saved into the file system local to the user, while

the use of files located in remote servers has not been demonstrated. The use of this

feature requires a proper configuration of the Aneka Storage service, which goes beyond

the scope of this tutorial.

6 Aneka Thread Model Samples

The examples directory in the Aneka distribution contains some ready to run applications

that show how is it possible to use the services provided by Aneka to build non-trivial

applications. The examples concerning the Thread Execution Model are the following:

• Mandelbrot

• ThreadDemo (within the Tutorials folder)

The ThreadDemo has been fully explored in this tutorial. For what concerns the

Mandelbrot example we will simply give some hints on how to explore the Visual Studio

Projects related to the sample and see how the Thread Model has been used to distributed

the application.

6.1 Mandelbrot

6.1.1 Mandelbrot Set

The Mandelbrot set is a set of complex numbers for which the following iteration:

 z = z0

 zn+1 = zn
2 + z

does not diverge to infinity. This means that there exist a number N that can be

considered the upper bound of the previous iteration. What makes interesting the

Mandelbrot set is the fact that when applied to complex numbers it generates a bi-

dimensional figure whose border does not simplify if magnified. In other word

Mandelbrot set creates very interesting and fascinating fractals. These fractals can

be easily generated by a computer program by using the following algorithm:

Escape Time Algorithm

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 49

1. let be W and H the size of the image we want to compute

2. let be z = 0+i0

3. then the range of complex values is [0+i0, W+iH]

4. for each complex number c = x+iy in [0+i0, W+iH]

 4.1 set s = true

 4.2 for i:0 to max_iterations do:

 4.2.1 compute z = z*z + c

 4.2.2 if |z| > 2 then set s = false and break

 4.3 if s is true c is in the Mandelbrot set (color: black)

 4.4 if s is false c is not in the Mandelbrot set (color: gradient)

5. end

Listing 18 - Mandelbrot set drawing.

The Escape Time algorithm is based on the assumption that no complex number with a

modulus bigger than 2 can be part of the Mandelbrot set. This can be used as a quick

condition to check whether the sequence of numbers generated for each c diverges or not.

For those complex numbers that belong to the Mandelbrot set this condition will always

hold and the iterations will continue indefinitely. The algorithm then imposes a maximum

number of iterations after which the given number can be reasonably considered part of

the Mandelbrot set. The algorithm presented does not guarantee a perfect drawing of the

Mandelbrot set but the bigger it is the number of iterations the more precise is the

resulting Mandelbrot set.

6.1.2 Parallel Mandelbrot computation

As it can be noticed from Listing 12, the computation that is performed for each complex

number in the range (that is for each pixel of the image) is identical and there is no

relation between the values computed for one complex number and next one evaluated.

This makes the determination of the Mandelbrot set an embarrassingly parallel problem.

It is possible to define a distributed version of the previous algorithm that:

1. Divides the range [0+i0, W+iH] into N rectangles whose size is wxh.

2. Computes in parallel the Mandelbrot set for each rectangle [w*k+ih*j, w*(k+1) +

h*(j+1)] where k = W / w, and j = H / h.

3. Composes the result into a single image.

Moreover, it is possible to provide a general offset to the image and a zoom factor that

allow us to explore the self similarity of the border of the Mandelbrot set.

6.1.3 Mandelbrot Sample

Figure 7 shows the Mandelbrot sample, which is available in the Aneka distribution. This

sample uses the Thread Model for parallelizing the computation of the Mandelbrot set as

described in the previous paragraph.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 50

Figure 7 - Distributed Mandelbrot

The application is accessible from the Start Menu -> Programs -> Manjrasoft -> Aneka ->

Examples -> Mandelbrot and the related files are located under the [Aneka Installation

Directory]\examples\Mandelbrot directory.

The sample is constituted by two components:

• The user interface application (Mandel.exe) that displays the Mandelbrot set and

allows to distribute its computation on Aneka.

• The MandelThread.dll library containing the definition of two classes:

o MandelThread: performs the computation of the Mandelbrot set on a given

rectangular region of the image.

o Complex: support class that represents a complex number.

The user interface creates as many AnekaThread instances as the number of cells that

have been specified by the user and starts their execution on Aneka. As soon as a

AnekaThread instance completes it updates the image displayed.

6.1.4 Conclusion

In this section we only have discussed the issues concerning the parallelization of a

Mandelbrot set computation by using the Thread Model. The whole application is more

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 51

complex and goes beyond the scope of this tutorial. It concerns also user interface

management in a multi-threaded environment.

7 Conclusions

In this tutorial we have introduced the Thread Model for developing distributed

applications based on remotely executable threads with Aneka. The Thread Model allows

developers to quickly virtualize multi-threaded applications with Aneka. It introduces the

concept of AnekaThread that represents a thread that is executed on a remote computing

node in the Aneka network. The AnekaThread class exposes a subset of the operations

offered by the System.Threading.Thread class, this makes the transition from a local

multi-threaded application to a distributed multi-threaded application straightforward.

As happens for local threads a AnekaThread is configured with a ThreadStart object that

wraps the information required run a method. It is possible to start, join, and abort a

thread in the same manner as we do with local threads. Few restrictions apply to the

execution of remote threads. As explained in the tutorial, AnekaThread instances cannot

be paused or run static methods and they do not support all the asynchronous operations

of the Thread class. Given these limitations, the Thread Model remains still appealing for

developers that want to take advantage of distributed computing systems without learning

a new programming model.

In order to explain and illustrate the approach to the development of distributed

application by using the Thread Model a simple application has been developed:

warholizer. This application is a multi-threaded image filters that reproduces the Warhol

Effect on a given picture by leveraging the computation on Aneka. In particular the

following aspects have been discussed:

• What is the Thread Model and how it relates with the common .NET threading APIs.

• How to create and configure an AnekaApplication for the Thread Model.

• How to create and configure an AnekaThread.

• How to control the execution of a Thread Model application by using AnekaThread

instances.

• How to implement the common synchronization patterns used in multi-threaded

applications.

• How to structure the source code of an application that is based on the Thread

Model.

• How to compile and build a working example from the command line.

• How to manage shared, input, and output files for the Thread Model.

Aneka 5.0 Developing Thread Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 52

This tutorial has also introduced the general notions concerning a distributed system based

on Aneka and the essential information for using the client APIs that are common to all

programming models. For a more complete and detailed description of the behavior of

these APIs it is possible to explore the APIs documentation.

