
MANJRASOFT PTY LTD

Developing MapReduce.NET Applications

Aneka 5.0

Manjrasoft

This tutorial describes the MapReduce programming model in the .NET environment and explains
how to create distributed applications with it over Aneka. It illustrates some examples provided with
the Aneka distribution. It provides a detailed guide on how to create a MapReduce application by
using the Microsoft Visual Studio 2005 Development Environment. After having read this tutorial,
the users will be able to develop their own MapReduce.NET application over Aneka.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd.

Table of Contents

1 Prerequisites ... 1

2 Introduction .. 1

3 MapReduce Model ... 3

3.1 MapReduce Overview ... 3

3.2 Map and Reduce ... 3

3.3 MapReduce Execution ... 3

4 MapReduce.NET ... 3

4.1 Architecture .. 4

4.2 MapReduce.NET API ... 6

4.2.1 Map API .. 6

4.2.2 Reduce API .. 8

4.2.3 MapReduceApplication API .. 9

4.2.4 File API .. 15

5 MapReduce Application Deployment .. 17

5.1 Overview ... 17

5.2 Configuring the MapReduce.NET Infrastructure .. 17

6 Examples .. 18

6.1 WordCounter .. 18

6.2 PiCalculator ... 23

7 Conclusions ... 28

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 1

1 Prerequisites

In order to fully understand this tutorial the user should be familiar with the general con-

cepts of Grid and Cloud Computing, Object Oriented programming and generics, distribut-

ed systems, and a good understanding of the .NET framework 4.5 and C#.

The practical part of the tutorial requires a working installation of Aneka. It is also sug-

gested to have Microsoft Visual Studio 2015 (any edition) with C# package installed1 even

if not strictly required.

2 Introduction

Aneka allows different kind of applications to be executed on the same Grid/Cloud infra-

structure. In order to support such flexibility it provides different abstractions through

which it is possible to implement distributed applications. These abstractions map to dif-

ferent execution models. Currently Aneka supports three different execution models:

• Task Execution Model

• Thread Execution Model

• MapReduce Execution Model

Each execution model is composed by four different elements: the WorkUnit, the Sched-

uler, the Executor, and the Manager. The WorkUnit defines the granularity of the model;

in other words, it defines the smallest computational unit that is directly handled by the

Aneka infrastructure. Within Aneka, a collection of related work units define an applica-

tion. The Scheduler is responsible for organizing the execution of work units composing

the applications, dispatching them to different nodes, getting back the results, and

providing them to the end user. The Executor is responsible for actually executing one or

more work units, while the Manager is the client component which interacts with the Ane-

ka system to start an application and collects the results. A view of the system is given in

Figure 1.

1Any default installation of Visual Studio 2005 and Visual Studio 2005 Express comes with all the
components required to complete this tutorial installed except of Aneka, which has to be
downloaded and installed separately.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 2

Figure 1 - System Component View

In the case of MapReduce the user does not directly express the tasks that need to be

computed but specifies two operations that are applied to the tasks generated automati-

cally by the infrastructure. Users will not directly deal with a specific WorkUnit, but we

will still have a MapReduce Scheduler, a MapReduce Executor, and a MapReduce Manager.

In order to develop an application for Aneka, the user does not have to know all these

components; Aneka handles a lot of the work by itself without the user's contribution. On-

ly few things users are required to know:

• How to define Map and Reduce operations specific to the application that is being

defined

• How to create a MApReduceApplication and use it executing MapReduce.NET appli-

cations

• How to control the MapReduceApplication and collect the results

In the remainder of this tutorial will then concentrate on the MapReduce Model, but many

of the concepts described can be applied to other execution models.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 3

3 MapReduce Model

3.1 MapReduce Overview

MapReduce is triggered by map and reduce operations in functional languages, such as

Lisp. This model abstracts computation problems through two functions: map and reduce.

All problems formulated in this way can be parallelized automatically.

All data processed by MapReduce are in the form of key/value pairs. The execution hap-

pens in two phases. In the first phase, a map function is invoked once for each input

key/value pair and it can generate output key/value pairs as intermediate results. In the

second one, all the intermediate results are merged and grouped by keys. The reduce

function is called once for each key with associated values and produces output values as

final results.

3.2 Map and Reduce

A map function takes a key/value pair as input and produces a list of key/value pairs as

output. The type of output key and value can be different from input key and value:

map::(key1,value1) list(key2,value2)

A reduce function takes a key and associated value list as input and generates a list of new

values as output:

reduce::list(key2,value2) list(value3)

3.3 MapReduce Execution

A MapReduce application is executed in a parallel manner through two phases. In the first

phase, all map operations can be executed independently with each other. In the second

phase, each reduce operation may depend on the outputs generated by any number of

map operations. However, similar to map operations, all reduce operations can be execut-

ed independently.

From the perspective of dataflow, MapReduce execution consists of m independent map

tasks and r independent reduce tasks, each of which may be dependent on m map tasks.

Generally the intermediate results are partitioned into r pieces for r reduce tasks.

The MapReduce runtime system schedules map and reduce tasks to distributed resources.

It manages many technical problems: parallelization, concurrency control, network com-

munication, and fault tolerance. Furthermore, it performs several optimizations to de-

crease overhead involved in scheduling, network communication and intermediate group-

ing of results.

4 MapReduce.NET

MapReduce is one of most popular programming models designed for data centers. It sup-

ports convenient access to the large scale data for performing computations while hiding

all low level details of physical environments. It been proved to be an effective program-

ming model for developing data mining, machine learning and search applications in data

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 4

centers. Especially, it can improve the productivity for those junior developers without

required experiences of distributed/parallel development.

Figure 2 - MapReduce Execution Model

MapReduce.NET is an implementation of MapReduce for data centers and resembles

Google’s MapReduce with special emphasis on the .NET and Windows platform. MapRe-

duce.NET supports an object-oriented interface for programming map and reduce func-

tions, and includes a set of storage APIs to wrap input key/value pairs into initial files and

extract result key/value pairs from results files. Figure 2 illustrates the big picture of

MapReduce.NET from the point view of users.

4.1 Architecture

The design of MapReduce.NET aims to reuse as many existing Windows services as possi-

ble. Figure 3 illustrates the architecture of MapReduce.NET. Our implementation is assist-

ed by several distributed component services of Aneka.

MapReduce.NET is based on master-slave architecture. Its main components include: man-

ager, scheduler, executor and storage.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 5

Figure 3 - MapReduce Archtecture

• Manager: the manager works as an agent of MapReduce computation. It submits

applications to the MapReduce scheduler and collects the final results after the ex-

ecution completes successfully.

• Scheduler: after users submit MapReduce.NET applications to the scheduler, it

maps sub tasks to available resources. During the execution, it monitors the pro-

gress of each task and takes corresponding task migration operation in case some

nodes are much slower than others due to heterogeneity.

• Executor: each executor waits task execution commands from the scheduler. For a

Map task, normally its input data locates locally. Otherwise, the executor needs to

fetch input data from neighbors. For a Reduce task, the executor has to fetch all

the input and merge them before execution. Furthermore, the executor monitors

the progress of executing task and frequently reports the progress to the sched-

uler.

• Storage: the storage component of MapReduce.NET provides a distributed storage

service over the .NET platform. It organizes the disk spaces on all the available re-

sources as a virtual storage pool and provides an object based interface with a flat

name space, which is used to manage data stored in it.

Figure 4 illustrates an example configuration of MapReduce.NET deployment with Aneka.

Client processes simply contain the libraries required to connect to Aneka and to submit

the execution of MapReduce tasks. A typical configuration will have installed the MapRe-

duce scheduler on the scheduler node while Mapreduce executors will be deployed on ex-

ecutors node. Each of the executor nodes will access a shared storage among all the

MapReduce executors by means of the Windows Shared File Service.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 6

Figure 4 - MapReduce System View

4.2 MapReduce.NET API

The implementation of MapReduce.NET exposes APIs similar as Google MapReduce. A

MapReduce.NET based application is then composed by three main components:

• Mapper: this class represents the base class that users can inherit to specify their

map function.

• Reducer: it represents the base class that uses can inherit to specify their reduce

function.

• MapReduceApplication: represents the driver of the entire application. This class is

configured with the Mapper and the Reducer specific classes defined by the user

and is in charge of starting the execution of MapReduce.NET, controlling it and col-

lecting the results.

Section 4.2.1 and 4.2.2 will respectively describe in detail the API for implementing the

Map function and the Reduce functions. Section 4.2.3 will then present the API required to

execute a MapReduce.NET application and how to configure them with the specific Map

and Reduce functions.

4.2.1 Map API

namespace Aneka.MapReduce

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 7

{

 /// <summary>

 /// Interface MapInput. Represents a key/value pair.

 /// </summary>

 public interface MapInput<K,V> : MapInput

 {

 /// <summary>

 /// Gets the Key of the key/value pair.

 /// </summary>

 K Key { get; }

 /// <summary>

 /// Gets the value of the key/value pair.

 /// </summary>

 V Value { get; }

 }

 /// <summary>

 /// Delegate MapEmitDelegate. Defines the signature of the method that

 /// is called to submit intermediate results.

 /// </summary>

 /// <param name="key">key</param>

 /// <param name="value">value</param>

 public delegate void MapEmitDelegate(object key, object value);

 /// <summary>

 /// Class Mapper. Defines the base class that user can specialize to

 /// implement the map function.

 /// </summary>

 public abstract class Mapper<K,V> : MapperBase

 {

 /// <summary>

 /// Defines the Map function.

 /// </summary>

 /// <param name="input">input value</param>

 protected abstract void Map(MapInput<K,V> input);

 }

}

Listing 1 - Map Related Classes and Interfaces.

To define a map function, users have to inherit the Mapper class and then override the

abstract Map function. The input argument is a IMapInput, which contains one input

key/value pair. The type of key and value are specified by generic parameters, K and V

respectively.

The map function defined by users is invoked once for each input key/value pair. Normal-

ly, the map function produces another key/value pair as output. Moreover, each input

key/value pair might generate a list of output key/value pairs. The generated intermedi-

ate results are collected by the MapReduce.NET runtime system by using MapEmitDele-

gate. Its input argument includes a key and a value for the intermediate key/value pair.

All of the collected intermediate key/value pairs are sorted by keys. Moreover, all values

associated same key are grouped together. Each group of intermediate values are taken as

an input for the reduce function, which normally performs an aggregate operation on the

grouped values and produce a final result.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 8

4.2.2 Reduce API

namespace Aneka.MapReduce

{

 /// <summary>

 /// Interface IReduceInputEnumerator. Defines an enumerator that iterates

 /// over the values of the same key.

 /// </summary>

 public interface IReduceInputEnumerator<V> : IEnumerator<V>,

 IreduceInputEnumerator;

 /// <summary>

 /// Delegate ReduceEmitDelegate. Defines the signature of the method that

 /// is called to submit aggregate results.

 /// </summary>

 /// <param name="value">value</param>

 public delegate void ReduceEmitDelegate(object value);

 /// <summary>

 /// Class Reducer. Defines the base class that user can specialize to

 /// implement the reduce function. The reduce function defined by users will

 /// be invoked to perform an aggregation operation on all the values

 /// associated with same intermediate key, which are generated by the map

 /// function.

 /// </summary>

 public abstract class Reducer<K,V> : ReducerBase

 {

 /// <summary>

 /// Defines the Reduce function.

 /// </summary>

 /// <param name="input">input value</param>

 protected abstract void Reduce(IReduceInputEnumerator<V> input);

 }

}

Listing 2 - Reduce Related Classes and Interfaces.

To define a reduce function, users have to inherit the Reducer class and then override the

abstract Reduce function. The input argument is an IReduceInputEnumerator, which is an

enumerator iterating over each element of one group of values associated with the same

key. The IReduceInputEnumerator interface implements the IEnumerator interface. The

type of key and value are specified by generic parameters, K and V respectively.

Within the reduce function, users extract each element of input values and then perform

an aggregation operation on all the input values. The aggregated final result is submitted

to the MapReduce.NET runtime system by using ReduceEmitDelegate. Its input argument is

an object. Therefore, it can accept any type of data as the final result.

All the final results are partitioned into multiple segments. The partition is achieved by

performing a hash function on each key of the final result. The space of keys is partitioned

into multiple pieces according to the specifications of users, and correspondingly values

locate in the same piece of key space consists of one partition. The final results are col-

lected by users after the MapReduce computation is completed successfully.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 9

4.2.3 MapReduceApplication API

To start executing a MapReduce application, users have to configure it by using the

MapReduceApplication class. Listing 3 shows the main methods and properties of the

MapReduceApplication class.

namespace Aneka.MapReduce

{

 /// <summary>

 /// Class MapReduceApplication. Configures a MapReduce application.

 /// </summary>

 public class MapReduceApplication<M, R> :

 ApplicationBase<MapReduceManager<M, R>>

 where M : MapReduce.Internal.MapperBase

 where R : MapReduce.Internal.ReducerBase

 {

 /// <summary>

 /// Gets, sets a the number of partitions of the final results.

 /// </summary>

 public int Partitions { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether the application

 /// should download the final result files to the local machine or not.

 /// </summary>

 public bool FetchResults { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether the application

 /// should synchronize the execution of reducer task or not.

 /// </summary>

 public bool SynchReduce { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether to combine results

 /// from the map phase in order to reduce the number of intermediate

 /// values.

 /// </summary>

 public bool UseCombiner { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a boolean value that indicates whether the input for the

 /// map is already loaded into the storage or not.

 /// </summary>

 public bool IsInputReady { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a the number of times to re-execute a failed task.

 /// </summary>

 public int Attempts { get { ... } set { .. } }

 /// <summary>

 /// Gets, sets a the name of the log file for the application.

 /// </summary>

 public string LogFile { get { ... } set { .. } }

 /// <summary>

 /// Fires when the MapReduce application is finished.

 /// </summary>

 public event EventHandler<ApplicationEventArgs> ApplicationFinished

 /// <summary>

 /// Initializes a MapReduce application.

 /// </summary>

 /// <param name="configuration">Configuration information</param>

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 10

 public MapReduceApplication(Configuration configuration) :

 base("MapReduceApplication", configuration) { ... }

 /// <summary>

 /// Initializes a MapReduce application.

 /// </summary>

 /// <param name="displayName">Application name</param>

 /// <param name="configuration">Configuration information</param>

 public MapReduceApplication(string displayName,

 Configuration configuration) :

 base(displayName, configuration) { ... }

 // from the ApplicatioBase class...

 /// <summary>

 /// Starts the execution of the MapReduce application.

 /// </summary>

 public override void SubmitApplication() { ... }

 /// <summary>

 /// Starts the execution of the MapReduce application.

 /// </summary>

 /// <param name="args">Application finish callback</param>

 public override void InvokeAndWait(EventHandler<ApplicationEventArgs>

 args)

 { ... }

 }

}

Listing 3 - MapReduceApplication class public interface.

By looking at the content of Listing 3 we can identify three different elements that com-

pose the interface of the MapReduceApplication. In the following we will explain their

meaning and their function in the execution of MapReduce.NET applications.

Type Parameters

• MapperBase class: specifies the Mapper class defined by users.

• ReducerBase class: specifies the Reducer class defined by users.

Configuration Parameters

• Partitions: the intermediate results are partition into r pieces, which correspond to

r reduce tasks. ReducePartitionNumber specifies r.

• Attempts: each map or reduce task may have errors during its execution. The er-

rors may be caused by various types of reasons. Users can specify a number n, by

using Attempts, to force the MapReduce.NET to re-execute its failed task n times

for tolerating those faults that are not caused by the MapReduce application itself.

• UseCombiner and SynchReduce are parameters that control the behavior of the in-

ternal execution of MapReduce and are generally set to true.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 11

• LogFile (optional): it is possible to store all the log messages generated by the ap-

plication into a file for analyzing the execution of the application off line.

ApplicationBase Methods

• SubmitApplication() is called to submit MapReduce application and input files to

the MapReduce scheduler and starts execution.

• ApplicationFinished is used to specify a function handler that is fired after the ap-

plication is completed.

• InvokeAndWait(EventHandler<ApplicationEventArgs> args) this is a convenience

method that is used to start the application and wait for its termination.

In order to create a MapReduceApplication it is necessary to specify the specific types of

Mapper and Reduce that the application will use. This is done by specializing the template

definition of the MapReduceApplication class. Moreovoer, in order to create an instance of

this class it is necessary to pass an instance of the Configuration class, which contains all

the customization settings for the application. Configuration is general class for all the

programming models supported by Aneka and provides some features to support the defi-

nition of custom parameters.

namespace Aneka.Entity

{

 /// <summary>

 /// Class Configuration. Wraps the configuration parameters required

 /// to run distributed applications.

 /// </summary>

 [Serializable]

 public class Configuration

 {

 /// <summary>

 /// Gets, sets the user credentials to authenticate the client to Aneka.

 /// </summary>

 public virtual ICredential UserCredential { get { ... } set { .. } }

 /// <summary>

 /// If true, the submission of jobs to the grid is performed only once.

 /// </summary>

 public virtual bool SingleSubmission { get { ... } set { ... } }

 /// <summary>

 /// If true, uses the file transfer management system.

 /// </summary>

 public virtual bool UseFileTransfer { get { ... } set { ... } }

 /// <summary>

 /// Specifies the resubmission strategy to adopt when a task fails.

 /// </summary>

 public virtual ResubmitMode ResubmitMode { get { ... } set { ... } }

 /// <summary>

 /// Gets and sets the time polling interval used by the application to

 /// query the grid for job status.

 /// </summary>

 public virtual int PollingTime { get { ... } set { ... } }

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 12

 /// <summary>

 /// Gets, sets the Uri used to contact the Aneka scheduler service which

 /// is the gateway to Aneka grids.

 /// </summary>

 public virtual Uri SchedulerUri { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the path to the local directory that will be used

 /// to store the output files of the application.

 /// </summary>

 public virtual string Workspace { get { ... } set { ... } }

 /// <summary>

 /// If true all the output files for all the work units are stored

 /// in the same output directory instead of creating sub directory

 /// for each work unit.

 /// </summary>

 public virtual bool ShareOutputDirectory { get { ... } set { ... } }

 /// <summary>

 /// If true activates logging.

 /// </summary>

 public virtual bool LogMessages { get { ... } set { ... } }

 /// <summary>

 /// Creates an instance of the Configuration class.

 /// </summary>

 public Configuration() { ... }

 /// <summary>

 /// Loads the configuration from the default config file.

 /// </summary>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration() { ... }

 /// <summary>

 /// Loads the configuration from the given config file.

 /// </summary>

 /// <param name="confPath">path to the configuration file</param>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration(string confPath) { ... }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <param name="bStrict">boolean value indicating whether to raise

 /// exceptions if the property does not exist</param>

 /// <returns>Property value</returns>

 public string this[string propertyName, bool bStrict]

 { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets the property group corresponding to the given name.

 /// </summary>

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 13

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name, or

 /// null</returns>

 public PropertyGroup GetGroup(string groupName) { ... }

 /// <summary>

 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(string groupName) { ... }

 /// <summary>

 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="group">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(PropertyGroup group) { ... }

 /// <summary>

 /// Removes the group of properties corresponding to the given name from

 /// the configuration if present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name if

 /// successfully removed, null otherwise</returns>

 public PropertyGroup RemoveGroup(string groupName) { ... }

 /// <summary>

 /// Checks whether the given instance is a configuration object and

 /// whether it contains the same information of the current instance.

 /// </summary>

 /// <param name="other">instance to compare with</param>

 /// <returns>true if the given instance is of type Configuration

 /// contains the same information of the current instance.</returns>

 public override bool Equals(object other) { ... }

 }

}

Listing 4 - Configuration class public interface.

Listing 4 reports the public interface of the Configuration class. An instance of the Config-

uration can be created programmatically or by reading the application configuration file

that comes with any .NET executable application. In case we provide the configuration

parameters through the application configuration file it is possible to get the correspond-

ing Configuration instance simply by calling the static method Configura-

tion.GetConfiguration() or by using the overloaded version that allows us to specify the

path of the configuration file. These methods expect to find an XML file whose structure is

shown in Figure 5.

As it can be noticed the specific parameters required by the MapReduce model are con-

tained in a specific tag <Group name=”MapReduce”> ...</Group>. The properties con-

tained in this tag are the same ones excosed by the MapReduceApplication class. The user

can then customize the execution of the MapReduce model by simply editing the values of

the properties contained in this file. The runtime will automatically, read this configura-

tion values and link them to the properties of the MapReduceApplication class. It is possi-

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 14

ble to omit some of the properties contained in this tag or even omit the entire tag. In

these cases the runtime will automatically update the configuration with the missing pa-

rameters by providing the default values.

For what concerns the MapReduce programming model the only other parameters that are

of interest in the Configuration are: SchedulerUri and the Workspace. The first one identi-

fies the uri of the Aneka scheduler while the second one points to the local directory that

is used to store the output files. All the other parameters directly exposed by the Configu-

ration class are of a general use for the other models but are not relevant for the execu-

tion of MapReduce.NET.

The configuration of the MapReduce.NET application is an example of the extensibility

model of the Configuration class. It is possible to inetgrate user properties to the configu-

ration by organizing them into groups and adding the groups to the configuration file or

the Configuration instance. Once added to the file the runtime will automatically load

them into the configuration object and expose them in the following format: Group-

Name.PropertyName

NOTE: The level of integration of MapReduce into the architecture of

Aneka is still at an early stage. For this reason, some of the components

that are implemented in the model do not comply with the general pro-

gramming and design guidelines of the framework. For example MapRe-

duce has a custom and optimized storage management system, which is

separated from the storage service provided by the framework. Another

feature that differs strongly from the other implementations is the sched-

uling service, which, at the moment, cannot be configured for supporting

the persistence mode configured with the framework.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 15

Figure 5 - MapReduce Archtecture

By using this syntax it is possible to retrieve them by using the indexer method exposed

by the Configuration class. For example if we want to retrieve the UseCombiner of the

MapReduce group we could use the following statements:

Configuration conf = Configuration.GetConfiguration();

string useCombinerProperty = conf["MapReduce.UseCombiner"];

This is basically what the MapReduceApplication does with some additional casts and

checks. Specific applications can create groups and store the parameters they need into

the configuration file very easily. The Configuration class provides specific API for adding,

removing, and retrieving PropertyGroup objects. Please refer to the documentation of the

API for more details.

4.2.4 File API

MapReduce applications work intensively with files. The infrastructure stores and reads all

the values that needs to execute Map and Reduce tasks from files. This is done in a com-

pletely transparent manner to the developer that does not have to care about file man-

agement. Hence, it is important to have a brief overview of the API that the model pro-

vides for file management.

Given the specific way in which data are manipulated the model there is only one type of

file that is used by the infrastructure: sequence file. A sequence file contains a list of

key/value pairs and it is represented by the Aneka.MapReduce.DiskIO.SequenceFile class.

If needed developers can read and write a sequence file by using the SeqReader and the

SeqWriter classes whose public interface is listed in Listing 5.

namespace Aneka.MapReduce.DiskIO

{

 /// <summary>

 /// Class SeqReader. Provides an enumerator to read key/value pairs in a

 /// Sequence File.

 /// </summary>

 public class SeqReader

 {

 /// <summary>

 /// Creates a SeqReader instance for accessing the

 /// data contained in the file passed as parameter.

 /// </summary>

 /// <param name="file">path to the file to read</param>

 public SeqReader(string file) { ... }

 /// <summary>

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 16

 /// Set the type of key/value pair in the contained in the file.

 /// </summary>

 /// <param name="keyType">type of the key istances in the file</param>

 /// <param name="valueType">type of the value instances in the file

 /// </param>

 public void SetType(Type keyType, Type valueType) { ... }

 /// <summary>

 /// Closes the reader and releases the resources allocated

 /// for reading the sequence file.

 /// </summary>

 public void Close() { ... }

 /// <summary>

 /// Moves the reader to the next key/value pair.

 /// </summary>

 /// <returns>true if there are still key/value pairs, false otherwise

 /// </returns>

 public bool HaxNext() { ... }

 /// <summary>

 /// Return the current key.

 /// </summary>

 /// <returns>current value of the key.</returns>

 public Object NextKey() { ... }

 /// <summary>

 /// Return the current value.

 /// </summary>

 /// <returns>current value.</returns>

 public Object NextValue() { ... }

 }

 /// <summary>

 /// Class SeqWriter. Provides an interface to write key/value pairs to a

 /// SequenceFile. The only way to write a SequenceFile is to add the new

 /// key/value pair to the tail of the file.

 /// </summary>

 public class SeqWriter

 {

 /// <summary>

 /// Creates an instance of SeqWriter for writing to file.

 /// </summary>

 /// <param name="file">path to the file to write</param>

 public SeqWriter(string file) { ... }

 /// <summary>

 /// Closes the SeqWriter and releases all the resources allocated for

 /// writing to the sequence file.

 /// </summary>

 public void Close() { ... }

 /// <summary>

 /// Append the key/value pair to the taile of the SequenceFile.

 /// </summary>

 /// <param name="key">key value to add to the file</param>

 /// <param name="value">value to add to the file</param>

 public void Append(Object key, Object value) { ... }

 }

}

Listing 5 - SeqReader and SeqWriter public interfaces.

The SeqReader class opens a sequence file and supports an enumerator-like method to ac-

cess the key/value pairs in the file. Users can check if there is still key/value pairs by

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 17

HasNext(), and get key and value by NextKey() and NextValue() seperately. Before reading

the sequence file, users have to specify the correct types of key/value pair by using Set-

Type(…). Close() is used to close the sequence file and its reader.

The SeqWriter class opens a sequence file and writes key/value pairs into the file. The

only way to write content into a sequence file is by using Append(key, value). Each

key/value pair is appended to the tail of the sequence file. Close() is used to close the se-

quence file and its writer.

5 MapReduce Application Deployment

5.1 Overview

The deployment of MapReduce application is simplified by Aneka. In order to execute a

MapReduce.NET application it is sufficient to create a MapReduceApplication class and

specialize the template with the desired Mapper and Reducer that characterize the appli-

cation. The specific behavior of the is then controlled by the Configuration object that

can be loaded from a file (see section 4.2.3 for details).

Once the MapReduceApplication has ben set up it is possible to execute the application by

invoking the MapReduceApplication.SubmitApplication() method. This method submits all

input files that the application requires to be execute and then starts the execution of the

application.

During execution, the status of the application is constantly monitored until it completes

successfully or fails. If the application completes successfully, MapReduceApplication col-

lects back the result files and put them into a local directory if the FetchResults property

is set to true. The location into which the files are placed is defined by the Workspace

property of the configuration. In case that the application cannot complete due to any

failures, the reason of failure is sent back to users. The result of execution is implemented

by the ApplicationEventArgs class, which contains the name list of result files.

5.2 Configuring the MapReduce.NET Infrastructure

The MapReduce.NET infrastructure is composed – as any other programming model sup-

ported by Aneka – of a scheduler service and an executor service. The only difference is

the use of the storage. MapReduce.NET as a specific and optimized storage that is only

used to store the files required by MapReduce applications.

In order to configure the components of the model it is possible to use the configuration

wizard integrated into the Manager Console or the Aneka MSI installer (please see the Ane-

ka Installation Guide for more details). We will briefly review the configuration settings

for these components:

MapReduceScheduler

• Username: user name of the account who has the rights to execute MapReduce ser-

vice.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 18

• Password: password for the account who has the rights to execute MapReduce ser-

vice.

MapReduceExecutor

• Username: user name of the account who has the rights to execute MapReduce ser-

vice.

• Password: password for the account who has the rights to execute MapReduce ser-

vice.

• StorageDirectory: local directory that is used to stage files by the MapReduceExec-

utor.

For what concerns the storage component there is no need of any specific configuration.

It is now possible to execute MapReduce application on Aneka and try the examples intro-

duced in the next section.

6 Examples

In order to get the feeling of how to program MapReduce.NET applications two examples

are presented: WordCounter and PiEstimator.

6.1 WordCounter

WordCounter is a benchmark example for the MapReduce programming model. It counts

the number of each word which appears in a large number of documents. Normally, the

disk space required to store all the documents cannot be reached by one machine. There-

fore, these documents distribute over a collection of machines.

The WordCounter application uses the Map and Reduce operations in order to respectively

count the occurrences of one word into a document and to sum all the occurrences of the

same words computed from different files. In order to implement the application two C#

projects have been developed:

• WordCounter.Library: is a class library containing the definition of the mapper and

the reducer classes required by the WordCounter application. The definition of

these classes is contained in the WordCounter.cs file and displayed in Listing 6.

• WordCounter: this is a simple console program that contains the code required to

initialize the MapReduceApplication with the previously defined mapper and re-

ducer classes, load the configuration of the application, and execute it on Aneka.

The listing of the driver program is displayed in Listing 7.

using System;

using Aneka.MapReduce;

namespace Aneka.Examples.MapReduce.WordCounter

{

 /// <summary>

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 19

 /// Class WordCounterMapper. Mapper implementation for the WordCounter

 /// application. The Map method reads the input and splits it into

 /// words. For each of the words found the word is emitted to the

 /// output file with a value of 1.

 /// </summary>

 public class WordCounterMapper : Mapper<string, string>

 {

 /// <summary>

 /// Checks whether the given character is a space or not.

 /// </summary>

 /// <param name="letter">test character</param>

 /// <returns>true if the character is a spece, false otherwise</returns>

 static bool IsSpace(char letter)

 {

 return !char.IsLetter(letter);

 }

 /// <summary>

 /// Reads the input and splits into words. For each of the words found

 /// emits the word as a key with a vaue of 1.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Map(MapInput<string, string> input)

 {

 string value = input.Value;

 string[] words = value.Split(

 " \t\n\r\f\"\'|!-=()[]<>:{}.#".ToCharArray(),

 StringSplitOptions.RemoveEmptyEntries);

 foreach(string word in words)

 {

 this.Emit(word, 1);

 }

 }

 }

 /// <summary>

 /// Class WordCounterReducer. Reducer implementation for the WordCounter

 /// application. The Reduce method iterates all over values of the

 /// enumerator and sums the values before emitting the sum to the output

 /// file.

 /// </summary>

 public class WordCounterMapper : Reducer<string, int>

 {

 /// <summary>

 /// Iterates all over the values of the enumerator and sums up

 /// all the values before emitting the sum to the output file.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Reduce(IReduceInputEnumerator<int> input)

 {

 int account = 0;

 while(reduceInput.MoveNext())

 {

 int value = reduceInput.Current;

 account += value;

 }

 this.Emit(account);

 }

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 20

 }

}

Listing 6 - WordCounterMapper and WordCounterReducer implementation.

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

using Aneka.MapReduce;

using Aneka.Entity;

using Aneka.MapReduce.DiskIO;

using System.Diagnostics;

namespace Aneka.Examples.MapReduce.WordCounter

{

 /// <summary>

 /// Class Program. Main application driver of the WordCounter application.

 /// </summary>

 class Program

 {

 /// <summary>

 /// Reference to the configuration object.

 /// </summary>

 static Configuration configuration = null;

 /// <summary>

 /// Location of the configuration file.

 /// </summary>

 static string configurationFileLocation = "conf.xml";

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void Main(string[] args)

 {

 try

 {

 // process the arguments

 ProcessArgs(args);

 Console.WriteLine("Use " + configurationFileLocation + ", to "

+

 "specify different configuration file, please " +

 "use -c [config-file] option!");

 // get the configuration

 configuration =

 Configuration.GetConfiguration(configurationFileLocation);

 // configure MapReduceApplication

 MapReduceApplication<WordCountMapper,

 WordCountReducer> application =

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 21

 new MapReduceApplication<WordCountMapper,

 WordCountReducer>("WordCounter",

 configuration);

 // invoke and wait for result

 application.InvokeAndWait(new

 EventHandler<ApplicationEventArgs>(OnApplicationFinished));

 }

 catch(Exception ex)

 {

 Usage();

 }

 }

 /// <summary>

 /// Hooks the ApplicationFinished events and process the results

 /// if the application has been successful.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="e">event information</param>

 static void OnApplicationFinished(object sender, ApplicationEventArgs

 e)

 {

 if (e.Exception != null)

 {

 Console.WriteLine(e.Exception.Message);

 }

 else

 {

 ParseResult();

 }

 Console.WriteLine("Press enter to finish!");

 Console.ReadLine();

 }

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void ProcessArgs(string[] args)

 {

 for(int i = 0; i < args.Length; i++)

 {

 switch(args[i])

 {

 case "-c":

 i++;

 configurationFileLocation = args[i];

 break;

 default:

 break;

 }

 }

 }

 /// <summary>

 /// Displays a simple informative message explaining the usage of the

 /// application.

 /// </summary>

 static void Usage()

 {

 Console.WriteLine("WordCounter.exe -c configuration_file");

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 22

 }

 /// <summary>

 /// Parses the results obtained from the MapReduceApplication

 /// and dumps the them into a single file where for each key

 /// is put along with a value. Then starts the Notepad application

 /// to show the content of this file.

 /// </summary>

 static void ParseResult()

 {

 DirectoryInfo sources = null;

 try

 {

 sources = new DirectoryInfo(configuration.Workspace);

 }

 catch(Exception ex)

 {

 Console.WriteLine("Reason {0}", ex.ToString());

 return;

 }

 FileStream resultFile = new FileStream("WordResult.txt",

 FileMode.Create,

 FileAccess.Write);

 StreamWriter resultWriter = new StreamWriter(resultFile);

 FileInfo[] resultList = sources.GetFiles();

 foreach(FileInfo result in resultList)

 {

 SeqReader seqReader = null;

 try

 {

 seqReader = new SeqReader(result.FullName);

 }

 catch(SequenceFileException ex)

 {

 Console.WriteLine(ex.ToString());

 return;

 }

 seqReader.SetType(typeof(string), typeof(int));

 while(seqReader.HaxNext())

 {

 Object key = seqReader.NextKey();

 Object value = seqReader.NextValue();

 resultWriter.WriteLine("{0}\t{1}", key, value);

 }

 seqReader.Close();

 }

 resultWriter.Close();

 resultFile.Close();

 Console.WriteLine("Please open WordResult.txt to see the result!");

 StartNotePad("WordCounter.txt");

 }

 /// <summary>

 /// Starts the Notepad application and instructs it to open the

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 23

 /// the file pointed by the parameter name.

 /// </summary>

 /// <param name="name">file name to open</param>

 public static void StartNotePad(string name)

 {

 Process notepad = Process.Start("notepad", name);

 }

 }

}

Listing 7 - WordCounter driver application.

The WordCounter application is configured with the file conf.xml that can be found its

directory. Except for the general parameters of the Configuration class and the properties

set for the MapReduce runtime there are no other parameters requested.

6.2 PiCalculator

PiCalculator is an application that uses the montecarlo simulation to estimate the value of

π. The estimation of π can be structured as a MapReduce application by adopting the fol-

lowing strategy: the Map operation selects a collection of random values (between 0 and

1) and checks whether the value locates inside the circle of radius equal to 1 if this hap-

pens it collects the value; the Reduce operation all the values that are accessed via the

input are summed together. Once the distributed execution the client component of the

application estimates the value of π.

In order to implement the application two C# projects have been developed:

• PiCalculator.Library: is a class library containing the definition of the mapper and

the reducer classes required by the PiCalculator application. The definition of

these classes is contained in the PiCalculator.cs file and displayed in Listing 8.

• PiCalculator: this is a simple console program that contains the code required to

initialize the MapReduceApplication with the previously defined mapper and re-

ducer classes, load the configuration of the application, and execute it on Aneka.

The listing of the driver program is displayed in Listing 9.

using System;

using Aneka.MapReduce;

namespace Aneka.Examples.MapReduce.PiCalculator

{

 /// <summary>

 /// Class PiMapper. Mapper implementation for the PiCalculator

 /// application. The Map method generates the random number between

 /// 0.0 and 1.0. If the generated values locates inside the circle they

/// are emitted to the output file.

 /// </summary>

 public class PiMapper : Mapper<long, long>

 {

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 24

 /// <summary>

 /// Random number generator.

 /// </summary>

 Random random = new Random();

 /// <summary>

 /// Number of elements inside the circle.

 /// </summary>

 long numInside = 0;

 /// <summary>

 /// Number of elements outside the circle.

 /// </summary>

 long numOutside = 0;

 /// <summary>

 /// Reads the input and splits into words. For each of the words found

 /// emits the word as a key with a vaue of 1.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Map(MapInput<string, string> input)

 {

 long nSample = input.Key;

 for(long idx = 0; idx < nSample; idx++)

 {

 double x = random.NextDouble();

 double y = random.NextDouble();

 double d = (x - 0.5) * (x - 0.5) + (y - 0.5) * (y - 0.5);

 if (d > 0.25)

 {

 numOutside++;

 }

 else

 {

 numInside++;

 }

 }

 this.Emit((long)0, numInside);

 }

 }

 /// <summary>

 /// Class PiReducer. Reducer implementation for the WordCounter

 /// application. The Reduce method iterates all over values of the enumerator

 /// and sums the values before emitting the sum to the output file.

 /// </summary>

 public class PiReducer : Reducer<string, int>

 {

 /// <summary>

 /// Iterates all over the values of the enumerator and sums up

 /// all the values before emitting the sum to the output file.

 /// </summary>

 /// <param name="input">map input</param>

 public override void Reduce(IReduceInputEnumerator<long> input)

 {

 long numInside = 0;

 while(reduceInput.MoveNext())

 {

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 25

 numInside += reduceInput.Current;

 }

 this.Emit(numInside);

 }

 }

}

Listing 8 - PiMapper and PiReducer public interfaces.

using System;

using System.Collections.Generic;

using System.Trheading;

using System.IO;

using Aneka.MapReduce;

using Aneka.Entity;

using Aneka.MapReduce.DiskIO;

namespace Aneka.Examples.MapReduce.PiCalculator

{

 /// <summary>

 /// Class Program. Main application driver of the PiCalculator

 /// application.

 /// </summary>

 class Program

 {

 /// <summary>

 /// Reference to the configuration object.

 /// </summary>

 static Configuration configuration = null;

 /// <summary>

 /// Location of the configuration file.

 /// </summary>

 static string configurationFileLocation = "conf.xml";

 /// <summary>

 /// Number of mapper to use.

 /// </summary>

 static long numberOfMaps = 1;

 /// <summary>

 /// Number of samples to take.

 /// </summary>

 static long numberOfSamples = 1;

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void Main(string[] args)

 {

 if (args.Length != 6)

 {

 Usage();

 }

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 26

 else

 {

 try

 {

 ProcessArgs(args);

 if (numberOfSamples <= 0)

 {

 Console.WriteLine("Please specify Map task number!");

 Usage();

 }

 else if (numberOfMaps <= 0)

 {

 Console.WriteLine("Please specify sample number!");

 Usage();

 }

 else

 {

 // create an aneka configuration

 Configuration configuration =

 Configuration.GetConfiguration(args[1]);

 string rootedPath =

 Path.IsPathRooted(configuration.Workspace) ?

 configuration.Workspace :

 Path.GetFullPath(configuration.Workspace);

 for(int idx = 0; idx < numberOfMaps; idx++)

 {

 string input = Path.Combine(rootedPath, "input-" +

 idx);

 SeqWriter writer = new SeqWriter(input);

 writer.Append(numberOfSamples, (long)0);

 writer.Close();

 }

 // start PiCalculator MapReduce

 MapReduceApplication<PiMapper, PiReducer> application

 = new MapReduceApplication<PiMapper,

 PiReducer>(configuration);

 Console.WriteLine("Application is running");

 application.InvokeAndWait(

 new EventHandler<ApplicationEventArgs>

 (OnApplicationFinished));

 }

 }

 catch(Exception ex)

 {

 Usage();

 }

 }

 }

 /// <summary>

 /// Hooks the ApplicationFinished events and process the results

 /// if the application has been successful.

 /// </summary>

 /// <param name="sender">event source</param>

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 27

 /// <param name="e">event information</param>

 static void OnApplicationFinished(object sender, ApplicationEventArgs

 e)

 {

 if (e.Exception != null)

 {

 Console.WriteLine(e.Exception.Message);

 }

 else

 {

 IList<string> results = (IList<string>)e.Data;

 foreach(string result in results)

 {

 SeqReader reader = new SeqReader(result);

 reader.SetType(typeof(long), typeof(long));

 long numInside = -1;

 if (reader.HaxNext())

 {

 numInside = (long) reader.NextValue();

 }

 reader.Close();

 if (numInside > 0)

 {

 double estimate = (double)(numInside * 4.0) /

 (numberOfMaps * numberOfSamples);

 Console.WriteLine("Pi: {0}", estimate);

 }

 }

 }

 Console.WriteLine("Press enter to finish!");

 Console.ReadLine();

 }

 /// <summary>

 /// Processes the arguments given to the application and according

 /// to the parameters read runs the application or shows the help.

 /// </summary>

 /// <param name="args">program arguments</param>

 static void ProcessArgs(string[] args)

 {

 for(int i = 0; i < args.Length; i++)

 {

 switch(args[i])

 {

 case "-c":

 i++;

 configurationFileLocation = args[i];

 break;

 case "-n":

 i++;

 numberOfMaps = int.Parse(args[i]);

 break;

 case "-s":

 i++;

 numberOfSamples = long.Parse(args[i]);

 break;

 default:

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 28

 break;

 }

 }

 }

 /// <summary>

 /// Displays a simple informative message explaining the usage of the

 /// application.

 /// </summary>

 static void Usage()

 {

 Console.WriteLine("PiEstimator.exe -c configuration_file " +

 "-n map# -s sample#");

 }

 }

}

Listing 9 - PiCalculator driver application.

The PiCalculator application is configured with the file conf.xml that can be found in the

directory application. The PiCalculator requires two more parameters that are passed via

the command line. A possible improvement of the application is moving these two param-

eters in a PropertyGroup named PiCalculator inside the configuration file and changing

the code of the Main method in order to read the values from the configuration. This task

is left to the reader.

7 Conclusions

In this tutorial we have introduced the MapReduce Model implemented in Aneka for run-

ning a set of MapReduce applications. Within the MapReduce Model a distributed applica-

tion is expressed in terms of a two operations: Map and Reduce. The first operation trans-

form a list of key/value pairs into another list of key/value pairs; the second operation

reduces a pair composed by a key and a list of values into another lsit of values. The com-

bination of Map and Reduce operations allows to process and elaborate large amount of

data with a very strightforward approach. The MapReduce.NET is an implementaion of

MapReduce for Aneka and the .NET framework and mades this abstraction available as a

programming model for Aneka.

In order to create a MapReduce application it is necessary to create an instance of the

MapReduceApplication properly configured with the mapper and reducer classes that de-

fine the operation of the application. This class constitute the client view of the MapRe-

duce application and interacts with Aneka for executing the sequence of map and reduce

operations by handling automatically scalability and fault tolerance.

This tutorial has covered the following arguments:

• General notions about the MapReduce Model.

• How to define a class that specialize the Mapper<K,V> class for defining the Map

operation.

Aneka 5.0 Developing MapReduce.NET Applications

Copyright © 2010 Manjrasoft Pty Ltd. 29

• How to define a class that specialize the Reducer<K,V> class for defining the Map

operation.

• How to create a MapReduceApplication instance and configure it with the specific

implementation of MapperBase and ReducerBase.

• How to tune the execution of MapReduce applications and starts their execution.

• How to customize the Configuration class with the custom values and how to man-

age the group of custom properties.

• How to collect the results from a MapReduce application.

• How to design and implement simple application such as WordCounter and PiCalcu-

lator by following the MapReduce model.

This tutorial does not fully cover what can be done with the MapReduce Model. For a more

detailed information about this and other aspects the user can have a look at the APIs

documentation.

