
MANJRASOFT PTY LTD

Aneka Dynamic Provisioning

Aneka 5.0

Manjrasoft

This document describes the dynamic provisioning features implemented in Aneka and how it is
possible to leverage dynamic resources for scaling up and down Aneka based Clouds. A general
overview of the infrastructure is given with a focus on the interaction with the supported
Infrastructure-as-a-Service (IaaS) providers or virtual machine managers.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd.

Table of Contents
1 Introduction ... 1

1.1 What is Dynamic Provisioning? ... 1

1.2 Provisioning Scenario .. 1

1.3 Common Terms .. 3

2 Architecture ... 4

2.1 Aneka Service Model .. 5

2.2 Dynamic Provisioning Infrastructure Overview .. 7

3 Configuration and Management .. 9

3.1 Scheduling Service Configuration .. 10

3.2 Resource Provisioning Service Configuration ... 12

3.2.1 Xen Resource Pool Configuration ... 14

3.2.2 Amazon EC2 Resource Pool Configuration ... 16

3.2.3 GoGrid Resource Pool Configuration ... 20

4 Programming ... 24

4.1 Extending the Dynamic Resource Provisioning Infrastructure 24

4.1.1 Developing New Scheduling Algorithms .. 25

4.1.2 Developing New Provisioning Strategies ... 28

4.1.3 Developing New Resource Pool Managers .. 30

4.1.4 Developing New Resource Pools ... 32

4.1.5 Developing a New Resource Provisioning Service 35

4.2 Programming Provisioning From Client Applications 37

4.3 Observations ... 41

5 Conclusions ... 41

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 1

1 Introduction

1.1 What is Dynamic Provisioning?

Dynamic provisioning refers to the ability of dynamically

acquiring new resources and integrating them into the existing

infrastructure and software system. Resources can be of different

nature: hardware or software. In the most common cases

resources are virtual machines of software services and they

identify two very well known segments in the Cloud Computing

market: Infrastructure-as-a-Service and Software-as-a-Service.

Dynamic provisioning in Aneka is mostly focused on provisioning and controlling the

lifetime of virtual nodes where to deploy the Aneka daemon and the container software.

Hence, it specifically refers to the provisioning of hardware in the form of virtual

machines whether they are provided by an IaaS provider such as Amazon EC2 or GoGrid or

a virtual machine manager such as Xen Server.

1.2 Provisioning Scenario

Figure 1 describes the common scenario in which dynamic provisioning constitute an

effective solution for real life deployments.

Figure 1 - Dynamic provisioning scenario.

A computing system, such as web application or platform for high performance computing

such as Aneka, is normally configured with a reasonable installed base of computing nodes

that in most of the cases are sufficient to address the performance and application

Installed base

Head Node

Scheduling &
Management

Load Balancing
& Monitoring

Budget
Management

Dynamic
Provisioning

Local Virtualization Facility

IaaS Provider(s)

Dynamic base

System

User A

User B

User C

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 2

requirements of associated to the usual workload. There could be cases in which the

installed base is not enough to cover the demand of users. These cases are normally

identified by peak load conditions or very specific and stringent Quality of Service

requirements for a subset of applications or users. Here is where dynamic provisioning can

constitute an effective solution: by leveraging a dynamic base, commonly composed by a

pool of virtual machines, the capacity and the throughput of the system can be

temporarily increased in order to address the specific needs of users.

To make this happen, a collection of system components coordinate their activities:

• Scheduling and management facilities identify the need of additional resources and

ultimately decide to provision them.

• Load balancing and monitoring facilities currently monitor the system load and the

status of current installed base (physical and virtual nodes under management).

• Budget management facilities provide information about whether the system can

afford additional resources given the requirements of users, their budget, and the

system policies.

• Dynamic provisioning facilities actually deal with the technical issues of issuing the

provisioning request and keep under control the lease of the managed virtual

instances.

It is expected that the virtual nodes will be properly configured with the required

software stack and virtual hardware to be integrated in the existing system. Whereas the

virtual hardware properties can be generally defined while issuing the provisioning

request, the software stack installed in the virtual machine can be statically configured in

the template used to create virtual instances or dynamically deployed by the system once

the node has become available.

Obviously, this is just a reference architecture but it is general enough to cover a huge

variety of cases in which dynamic provisioning is used to enhance the performance and the

throughput of the system. For example there could be cases in which the system only

relies on a local virtualization facility that is freely available; in this case the provisioning

process will be simpler and not conditioned by any consideration about the budget. But,

since dynamic provisioning mostly relies on Infrastructure-as-a-Service providers that make

available resources on a pay-as-you-go model, the common case includes an evaluation of

the economical aspect of provisioning resources and whether it is of advantage to leverage

them.

The dynamic provisioning infrastructure designed in Aneka has been designed to cover

both of the two cases and its flexibility provides way to address new provisioning scenarios

that might occur in specific deployments.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 3

1.3 Common Terms

In this section we will briefly introduce some of the terms that will be used in the entire

document and that are related specifically to dynamic provisioning and virtualization.

• Virtual Machine (VM). A virtual machine identifies a virtual node, where by node

we refer to a physical machine, or computer, which has proper software stack

installed on it including at least an operating system. In general a virtual machine

only represents an abstraction of the computer hardware that is suitable for the

installation of an operative system, but common uses of virtual machines require

proper software stack already packaged and installed on the VM.

• Virtual Machine Image, Virtual Image, or Virtual Template. A virtual machine

image or template represents the set of information that are used to create a

specific virtual machine featuring a specific hardware configuration and software

stack. This information is normally maintained as a binary file stored somewhere

and it is used as a template that is cloned and completed with dynamic information

whenever a virtual machine is created.

• Virtual Machine Manager (VMM) or Hypervisor. The virtual machine manager is

the software infrastructure that is in charge of managing a virtual infrastructure.

The tasks that are normally performed by a VMM are: creating and managing

templates, creating and controlling the life cycle of virtual machines.

• Local Virtualization Facility. A local virtualization facility is a local installation of

one or more virtual machine manager technology that is able to provide virtual

infrastructure mostly constituted by virtual machines. The virtual infrastructure is

generally available for free and subject to the physical capacity of the computing

system backing the virtual infrastructure. In some cases the local virtualization

facility is also referred as Private Cloud.

• Pay-as-you-go (PAYG) or pay-per-use model. PAYG identifies a specific pricing

scheme in which an item, generally a service, is consumed under payment and the

payment is proportional to the usage that the customer makes of the service. PAYG

models generally bill customers according to some specific parameters that vary as

the service gets more used. Examples are rented time for a virtual machine, data

transfer volume for virtual storage, number of transaction for a database service.

• Infrastructure-as-a-Service (IaaS). Infrastructure-as-a-Service refers to a specific

market segment in Cloud Computing where a virtual infrastructure including

storage, computing, and networking can be consumed as a service according to

specific pricing scheme and defined service level agreement. In the majority of the

cases, the pricing scheme is characterized by a pay-as-you-go model. One of the

key advantages of IaaS is the ability of dynamically providing virtual infrastructure

on demand.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 4

• IaaS Provider. An IaaS provider is a specific organization or company operating in

the IaaS market segment that leverages some virtual machine manager technology

for providing virtual infrastructure and making it available as a service to

customer. IaaS providers generally introduce added value on top of the provision of

virtual infrastructure by offering advanced services for the management of such

infrastructure and ease of use.

• Private Cloud. A Private Cloud identifies a on-premise installation of virtualization

facilities that are able to provide virtual infrastructure on demand and make it

available as a service. The term private mostly refers to the fact that such facility

is generally not publicly accessible and resides within the premises of the same

organization that leverages its services. A Private Cloud can also be composed by

several virtualization facilities as long as they are not publicly available.

• Public Cloud. A Public Cloud refers to the virtual infrastructure made accessible by

an IaaS provider or a combination of them. What characterizes the Public Cloud is

the fact that the virtual infrastructure provisioned does not reside within the

premises of the organizations that use it. A Public Cloud generally includes a

pricing scheme and charge users, there could be few cases in which the virtual

resources is freely available.

• Hybrid Cloud. A Hybrid Cloud is the resulting distributed system obtained from the

combination of at least a Public and a Private Cloud or a Public Cloud and the

existing local infrastructure. By the term combination we refer to the fact that the

resulting managed infrastructure is partially provisioned and/or the services made

available within such infrastructure can be partially offered by third party

organizations.

These terms cover the minimum knowledge that is required to understand the basics of

dynamic provisioning in general and in the case of Aneka. This document is not intended

to be a complete guide on dynamic provisioning, but focuses on the design and the

architecture of the provisioning system in Aneka.

2 Architecture

Aneka integrates dynamic provision capabilities as part of its service model and dynamic

provisioning is the result of the collaboration of several services and components that

allow:

• Requesting virtual machine instances from a variety of virtual machine managers or

IaaS providers;

• Dynamically detecting the need of additional resources to maintain the desired

quality of service for application execution;

• Controlling the lease of dynamic resources to optimize their usage;

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 5

All these operations are transparently performed by the middleware without the user

intervention and with a minimal configuration process during the Cloud setup.

In this section we will briefly recall the Aneka service model implemented in the Aneka

Container and describe the architecture of the dynamic provisioning infrastructure.

2.1 Aneka Service Model

Aneka provides its services for application execution by deploying on each managed

computing node a software container, called Aneka Container, which hosts a collection of

services. The Aneka Container is in charge of managing the basic interaction with the

hosting environment and operating system and provides accessibility to the services that

constitute the “intelligence” and the “horse power” of the Aneka Cloud.

Aneka provides a large collection of services that cover all the needs for managing a

distributed computing platform. Some of these services are part of the infrastructure and

not of direct interest for end users others are primarily designed for interacting with users

and applications. Among these services we can consider:

• Scheduling and Execution services: they are configured and managed as a pair and

control the execution of applications.

• Storage services: they are in charge of the management of data and provide an

internal storage for applications.

• Reporting, Logging and Monitoring services: they are configured and managed for

collecting information about users, applications, and system components.

• Security services: they enforce a specific level of security in the Aneka Cloud.

Figure 2 provides a reference model of the Aneka Container together with some of the

services that characterize a possible configuration. Aneka containers can be configured

and deployed by using the Aneka Cloud Management Studio, which provides the basic

configuration templates (Master and Worker) that are commonly used to setup Aneka

Clouds as well as advanced capabilities for customizing these templates.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 6

Figure 2 - Container architecture.

The installation and the configuration of the dynamic provisioning infrastructure mostly

refer to the configuration of the Master template, and of particular interest are the

Scheduling Services (Task and Thread Programming Models) and the Resource Provisioning

Service. There are also other services involved in the provisioning of dynamic resources,

but these services are not under the control of the user and operate as part of

infrastructure. Hence, these services will not be discussed in this document.

NOTE: The MapReduce Programming Model has a different and

separate collection of Scheduling, Execution, and Storage

services. Such services, because of the specific implementation

of MapReduce are not integrated with the dynamic provisioning

infrastructure. Hence, the rest of this document applies for the

case of provisioning virtual resources for executing applications

that are based on the Task or Thread programming models.

Container

Fabric Services

Hardware
Profiling

Resource
Provisioning

Platform Abstraction Layer

Foundation Services

Storage Accounting

Security Membership

…..

…..

Application Execution Services

ExecutionScheduling

MapReduce

Task

Thread

….

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 7

2.2 Dynamic Provisioning Infrastructure Overview

Figure 3 shows an overview of the dynamic provisioning infrastructure implemented in

Aneka.

The dynamic provisioning infrastructure is mainly the result of the collaboration between

two services: the Scheduling Service and the Resource Provisioning Service. The former

triggers the provisioning request according to the status of the system and the

requirements of applications while the latter is in charge of making the provisioning

happen by interacting with IaaS providers and local virtualization facilities.

The system is completely modular and can be fully customized to activate and control the

behavior of dynamic provisioning. In Figure 3 the major components of the architecture

have been pointed out.

• Scheduling Service: this service manages the execution of applications for a

specific programming model. The Task and Thread programming models feature a

scheduling service which is composed by a Scheduling Context and a configurable

Scheduling Algorithm. While the scheduling context cannot be changed and deals

with the internals of service implementation, the scheduling algorithm controls

how applications are executed.

• Scheduling Algorithm: the scheduling algorithm is responsible for scheduling the

execution of applications. More precisely, it is in charge of allocating a collection

of tasks to the available set of resources in a dynamic fashion. There is one

scheduling algorithm for all the applications developed for a specific programming

model and it is possible to select different algorithms while configuring the service.

Among the available options, there are two scheduling algorithms that support

dynamic provisioning: FixedQueueProvisioningAlgorithm and

DeadlinePriorityProvisioning-Algorithm. These two algorithms are the only two

that leverage dynamic provisioning to cope with the application or system

requirements.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 8

Figure 3 - Dynamic provisioning infrastructure overview.

• Scheduling Context: this component interfaces the scheduling algorithm with the

service implementation. The algorithm uses the context interface to be notified

about the events occurring in Aneka and to communicate scheduling decisions to

the system. This interface has been designed to support dynamic provisioning and

provides hooks that are used by the scheduling algorithm to ask for dynamic

resources.

• Resource Provisioning Service: this service is responsible for satisfying a

provisioning request. It can be considered as a black box that makes the

provisioning magic happens. The service mainly performs the following operations:

resource provision, resource release, resource status query, and resource pool

status query. The current implementation of this service breaks down all the

functionalities of provisioning into the following components: Resource Pool

Manager and Resource Pools. The former is in charge of managing the pools by

Resouce Provisioning Service

ResoucePool
Manager

ResoucePool

ResoucePool

ResoucePool

Scheduling Service

Scheduling
Context

Scheduling Algorithm
(Resource Provisioning Aware)

Amazon EC2

GoGrid

Xen Server

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 9

delegating to them the specific technicalities required for dealing with a specific

virtual machine manager or IaaS provider.

• Resource Pool Manager: the pool manager performs most of all the management

tasks of the pools and is the place where dynamic provisioning strategies can be

implemented. The main responsibility of the pool manager is controlling the life

cycle of pools and redirecting a provisioning request, release, or query to the

appropriate pool. The pool manager also notifies the provisioning service when a

dynamic resource is activated and terminated.

• Resource Pool: the resource represents the last component in the provisioning

chain and encapsulates all the technical details and specific protocols that have to

be used to create virtual instances and manage them for a specific resource

provider. The main operations performed by this component are: translating the

provisioning request into a provider specific request; controlling the life cycle of

virtual instances; and shutting them down when they are no longer needed. Aneka

features three different implementations that allow the interaction with three

different resource providers: EC2ResourcePool, GoGridResourcePool, and

XenResourcePool. They respectively integrate Amazon Elastic Computer Cloud

(EC2), GoGrid, and XenServer.

This brief discussion provides an overview of the main components involved in the dynamic

provisioning chain. The elements that are of major interest from an administrative point

of view are the scheduling algorithm and resource pools, since are those that actually

available for administrators to control the behavior of dynamic provisioning. The other

components are mostly concerned with the development and the integration of new

features within the dynamic provisioning infrastructure of Aneka.

3 Configuration and Management

Aneka provides a completely configurable and extensible architecture for what concerns

dynamic provisioning. The previous section has highlighted the crucial components that

are involved in the provisioning chain, in this section we will concentrate on the support

given for configuring those components and managing them.

The configuration of the dynamic provisioning infrastructure can be performed by the

Aneka Cloud Management Studio while configuring the services of the Master container.

Figure 4 shows the steps that lead to the configuration of dynamic provisioning. In the

Services page the administrator has to properly select and configure three services:

• TaskScheduler: this service controls the scheduling of applications based on the

Task Programming Model and needs to be properly configured to leverage dynamic

provisioning.

• ThreadScheduler: this service controls the scheduling of applications based on the

Thread Programming Model and needs to be properly configured to leverage

dynamic provisioning.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 10

• ResourceProvisioningService: this service is generally selected by default but no

resource pool is configured. Hence, dynamic provisioning is turned off.

Figure 4 - Dynamic provisioning configuration.

The configuration of the two scheduling services is exactly the same and it is mostly

concerned with selecting the appropriate scheduling algorithm while configuring the

service. The configuration of the resource provisioning service instead allows the user to

activate resource provisioning and select the collection of pools that service should

leverage to provision virtual instances.

3.1 Scheduling Service Configuration

The configuration of the scheduling services only requires the selection of the proper

scheduling algorithm. Two algorithms are available for using dynamic provisioning:

• FixedQueueProvisioningAlgorithm: this algorithm provides a programming model

wide management for dynamic provisioning and it ensures that the queue of tasks

or threads that are waiting to be executed never exceeds a threshold value

(GrowThreshold). Also the algorithm allows for dynamic resource release when the

size of the queue goes below a specific threshold value (ShrinkThreshold). This

algorithm works across all the applications and makes use of provisioning for

controlling the throughput and the performance of the entire system. Figure 5

shows how to select and configure this algorithm for the TaskScheduler service.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 11

Figure 5 - Fixed queue provisioning algorithm configuration.

• DeadlinePriorityProvisioningAlgorithm: this algorithm is designed to leverage

dynamic resources when the Quality of Service requirements of a specific

application cannot be met. More specifically, the algorithm makes an estimation of

the expected completion time of the application with currently available resources

and if the expected completion time is later the deadline defined in the Quality of

Service parameters of the application requests the required number of resources to

complete the application in time. This algorithm works per application and

provides a best effort strategy1 for meeting the required deadline. Figure 6 shows

how to set the algorithm for the ThreadScheduler service.

As shown by the figure this algorithm does not have any further parameter that needs to

be configured.

1 The strategy is best effort because if the provisioning fails or no resource pool is configured the deadline

cannot be met.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 12

Figure 6 - Deadline priority provisioning algorithm selection.

As shown it is possible to configure the two different scheduling services with two

different provisioning algorithms if the requirements for the two different programming

models are different. There is no single scheduling algorithm that can leverage dynamic

provisioning from a system wide point of view, this is because the management of the

different programming models is separate and the two schedulers do not share the

information about themselves.

3.2 Resource Provisioning Service Configuration

The configuration of the resource provisioning service relates to the selection and the

configuration of the specific resource pools that the service will leverage while asking for

dynamic resources. It is possible to configure the service with a collection of pools and to

include multiple instances of the same pool with different configuration parameters. At

the moment only three resource pools are supported:

• XenResourcePool: supports the provisioning and management of resources from

XenServer.

• EC2ResourcePool: supports the provisioning and management of resources from

Amazon EC2.

• GoGridResourcePool: supports the provisioning and management of resources from

GoGrid.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 13

In order to leverage such capabilities it is necessary to turn on the dynamic provisioning

for the ResourceProvisioningService as indicated in Figure 7 and making sure that the

service is selected.

Figure 7 - Resource provisioning service configuration.

As shown in the figure, there is only one parameter for the configuration of the service:

Option. This parameter is by default set to None that turns off dynamic provisioning. In

order to activate it, it is necessary to select Manage. By selecting this option a new

configuration editor is shown and it is possible to add resource pools to the service and

configuring them with the proper information for interacting with the corresponding IaaS

provider or virtual machine managers. As shown in Figure 8, in order to add a pool to the

service it is necessary to select the type of pool in the drop down list, provide a name of

the pool, and click the Add button. This operation will add the resource pool to the list of

managed pools and give access to the configuration setting of the pool itself.

Once the pool has been added it is possible to change its configuration parameters by

clicking the corresponding reference on the pool list on the left of the dialog. The pool

will be referenced by using a string that is composed by the pool type followed by a colon

and the pool name chosen by the user. In the case shown in Figure 8 the pool will be listed

as: XenPool:MyXenPool. It is also possible to delete a pool by selecting and clicking the

Delete button at the bottom of the dialog.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 14

Figure 8 - Resource pool creation and configuration.

For each of the parameter settings of the pool at the bottom of the parameter list a small

help text will be showed to help the administrator to understand the use of the parameter

and properly configure it.

Once the creation and configuration off all the pools are completed it is possible to save

the data by clicking the Apply button, otherwise if the user wants to cancel the operation

it can simply close the editor by clicking at the close (top right corner) icon of the dialog.

3.2.1 Xen Resource Pool Configuration

Figure 9 shows the parameters that are required for properly configuring and adding the

Xen Resource Pool. The parameters that can be configured are the following:

• Capacity: this value provides a limit to the number of virtual instances that can be

requested and managed by the pool. By default this value is equal to 1 but it is up

to the administrator to select a proper value.

• Pool Master: this parameter identifies the DNS name or the IP address of the Xen

Pool Master. The pool master is the entry point to Xen-based managed system and

it represents the virtual machine manager that will control all the requests for

virtual machine creation.

• Port: the parameter identifies the port number on which the XenServer on the Pool

Master is listening. By default this value is set to 80, which is the default port on

which XenServer is listening, if the secure connection is enable an alternative port

to select might be 443.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 15

• Template Name: the parameter identifies the name of the virtual machine

template that will be used by XenServer to create virtual machine instances. This

value does not have to be set to template id.

• MAC Address Pool: the parameter allows the administrator to enter a collection of

MAC addresses that the pool should use in order to create virtual machines. If this

value is not set XenServer will automatically create MAC addresses, otherwise will

use the ones provided. It is important to notice that the content of this list actually

limits the number of virtual machines that can be managed at the same time by

the pool. If the pool is not empty the size of the pool will override the value set

for the Capacity parameter.

• User Name: the parameter identifies the user name used to issue the login to

XenServer.

• User Password: the parameter identifies the user password that is used to

authenticate the user with XenServer.

This operation completes the configuration of the resource pool for what concerns Cytrix

XenServer.

Figure 9 - Xen resource pool configuration.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 16

3.2.2 Amazon EC2 Resource Pool Configuration

Figure 10 shows the set of parameters that can be configured for the Amazon EC2 resource

pool. The pool is designed to work on behalf of one account and using a specific virtual

machine image.

The parameters that can be configured are the following:

• Capacity: this parameter identifies the number of virtual resources that can be

managed at the same time by the pool. This number has to be properly set and can

be overridden by the constraints of the account that is used to interact with

Amazon EC2. For example the default limit of concurrent instances that can be

created on Amazon EC2 is 20. Hence, values bigger than 20 will automatically end

up in a provision failure once the limit of twenty instances is reached.

Figure 10 - Amazon EC2 resource pool configuration.

• Image Id: this parameter identifies the unique identifier of the virtual image

template that Amazon EC2 should clone in order to create virtual machines. This

value can be looked up in the AWS Management Console under EC2 tab by clicking

the AMIs button on the left side. The console will show the list of images available

to the currently logged in account. The AMI Id column contains the required value.

• Availability Zone: this parameter allows the administrator to select the specific

availability zone where to deploy the virtual instance. At the moment the only

zones that can be requested are the following: US East 1a, US East 1b, US East 1c,

US East 1d.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 17

• Instance Type: this parameter identifies the hardware configuration required for

the virtual machine that will be created. The range of possible values directly

maps the instance types defined by Amazon EC2. More precisely it is possible to

choose from: Micro, Small, Medium, Large, HighMemXL, HighMem2XL,

HighMem4XL, HighCPUSmall, HighCPUMedium, and HighCPULarge. The mapping

between the available options and the corresponding Amazon EC2 instance types is

the following:

o Micro Micro Instance (API name: t1.micro)

o Small Small Instance (API name: m1.small)

o Medium Large Instance (API name: m1.large)

o Large Extra Large Instance (API name: m1.xlarge)

o HighMemXL High-Memory Extra Large Instance (API name: m2.xlarge)

o HighMem2XL High-Memory Double Extra Large Instance (API name:

m2.2xlarge)

o HighMem4XL High-Memory Quadruple Extra Large Instance (API name:

m2.4xlarge)

o HighCPUMedium High-CPU Medium Instance (API name: c1.medium)

o HighCPULarge High-CPU Extra Large Instance (API name: c1.xlarge)

Cluster instances are not supported at the moment. Please refer to the Amazon EC2

documentation for the characteristics of each of these instance types.

Moreover, the successful request of an instance of the specified type is subject to the

constraints that are applied to the account on behalf of which the resource pool is issuing

the request.

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 18

Figure 11 - Amazon AWS Access Key.

• Access Key: the parameter identifies the account on behalf of which the pool will

be issuing the requests and interacting with Amazon EC2. This value can be

obtained from the Amazon Web Service portal, under the Security Credentials

area, once logged in. Figure 11 shows where to collect the value.

• Secret Access Key: this parameter identifies the authentication password that is

used to validate the account represented by the Access Key. With reference to

Figure 11, in order to get the value of the Secret Access Key it is necessary to click

the Show link on following the selected Access Key.

• Key Pair: the key pair identifies the asymmetric key pair that is used to make a

connection to the remote virtual instance once it has been launched. This value is

not necessary unless the user tries to connect to the remote instance through SSH,

but it is required in order to issue a proper request to Amazon EC2. This parameter

collects the name of the key pair, which can be looked up in AWS Management

Console as shown in Figure 12. If the account under use has no key pairs stored it is

possible to create one from by clicking on the Create Key Pair button.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 19

Figure 12 - Amazon AWS Key Pair management.

Key pairs can also be managed from the Amazon Web Services portal. As shown in

Figure 11, under the Security Credentials, section there is a Key Pair tab that

allows for managing the Key Pairs of both Amazon CloudFrount and Amazon EC2. If

you are planning to use this feature, please ensure to create an Amazon EC2 key

pair. For further information about the role of the key pair in using Amazon EC2

please refer to the Amazon EC2 Documentation.

• Security Groups: this parameter identifies the collection of security groups that

the virtual instance that is created will belong to. The dialog opens up an editor

where the administrator can enter the names of the security groups that will be

associated to the virtual instance (one per line).

http://aws.amazon.com/ec2/faqs/

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 20

Figure 13 - Amazon AWS Security Group management.

As shown in Figure 13, the available security group can be looked up in the AWS

Management Console, under the Security Groups section. If the current account is

not configured with any security group the AWS Management Console allows the

creation of a new security group by clicking the Create Security Group button. In

order how to configure and use Security Group in Amazon EC2 please refer to the

Amazon EC2 Documentation.

These parameters complete the configuration of the Amazon EC2 Resource Pool. As it is

generally known, the default limit of instances for one single account is 20 instances (if no

exceptional conditions apply); it is possible to leverage a major number of instances by

using multiple accounts and configuring one Amazon EC2 Pool for each of the account

used.

3.2.3 GoGrid Resource Pool Configuration

Figure 14 shows the set of parameters that can be configured for the GoGrid resource

pool. The pool is designed to work on behalf of one account and using a specific virtual

machine image.

http://aws.amazon.com/ec2/faqs/

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 21

Figure 14 - GoGrid resource pool configuration.

The parameters that can be configured are the following:

• Capacity: this parameter identifies the number of virtual resources that can be

managed at the same time by the pool. This number cannot be set and it is

automatically inferred from the size of the Public IP Address Pool.

• Image Id: this parameter identifies the unique identifier of the virtual image

template that GoGrid should clone in order to create virtual machines. This value

can be looked up in the GoGrid Management Console by simulating the creation of

a new Image sandbox and selecting the specific image from which we want to clone

the sandbox.

What is shown in Figure 15 is the final window that is presented to the user once the right

virtual machine image has been selected and the user has pressed the next button. The

entire sequence of steps to get to this screen is the following:

1. Click on Add new image sandbox.

2. Select Image Sandbox from the list Available Objects.

3. Click on Yes, continue.

4. Select the image that you want to look the Image-id for.

5. Press next at the top of the window.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 22

The sequence of steps described before will lead you to the screen depicted in Figure 15.

Figure 15 - GoGrid image GSI.

• Public IP Address Pool: this parameter allows you to select a list of public IP

addresses that the resource pool can use to create virtual instances. In order to

create a virtual machine instance it is necessary to provide a public IP address

otherwise the instance will not be reachable. The possible IP available for use can

be collected from the GoGrid account on behalf of which the resource pool

operates. Figure 16 shows where to locate the available public IP addresses for use

for a specific account. The user interface of the GoGrid management console also

offers the possibility of requesting more IP if the current number is not sufficient.

• RAM Size: this parameter allows you to set the memory size of the virtual instance.

The available options are the following:

Half_GB 500 MB

One_GB 1 GB

Two_GB 2 GB

Four_GB 4 GB

• Secret Key: the secret key identifies the user account on behalf of which the

resource pool is interacting with GoGrid. The value of the secret key can be

collected from the GoGrid portal under the My Account section as shown in Figure

17.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 23

Figure 16 - GoGrid public IP pool configuration.

Figure 17 - GoGrid API key.

As shown in Figure 17, it is also possible to create new secret keys if needed.

• API Key: this parameter identifies the authentication code that is used to validate

the Secret Key. With reference to Figure 17, this value can be collected by clicking

on the desired secret key and copying the value that is shown in the Secret Key

field of the window that pops up.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 24

Figure 18 - GoGrid secret key.

These operations complete the configuration of the GoGrid resource pool. Should multiple

accounts be used it is possible to configure multiple instances of the GoGrid resource pool

(one per account).

NOTE: All the discussed resource pools do not perform any

deployment and advanced configuration of the Aneka Container

in the virtual machine. It is up to the administrator to properly

prepare a virtual image that is compliant with the current

installation settings of the Cloud. In particular, the URI to the

index server (Master container: tcp://[host]:[port]/Aneka) and

the necessary authentication keys. Also, it is not possible to

perform any specific container configuration through the wizard

for virtual instance, but the Spring.config.xml and the

Aneka.cfg.xml files need to be already prepared and set inside

the virtual image.

4 Programming

From a user point of view Aneka provides the capability of configuring several pools and

leveraging different resource providers even by using multiple accounts and settings for

each of them. These features allow for a high degree of flexibility in using the dynamic

provisioning infrastructure. When these options are not enough to cover a specific

scenario, developers can easily develop and integrate their own solutions which extend

the current set of capabilities of the dynamic provisioning infrastructure.

4.1 Extending the Dynamic Resource Provisioning Infrastructure

The Dynamic Resource Provisioning Object Model of Aneka allows is completely extendable

and customizable and offers different extension points that can be exploited to provide

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 25

new solutions for dynamic provisioning. As described in Figure 3 there are several

components that compose the dynamic provisioning infrastructure and almost all of them

are replaceable with a custom implementation. The object model actually allows

developers to:

• Develop new scheduling algorithms

• Develop new provisioning strategies

• Develop new resource pool managers

• Develop new resource pools

• Develop new a resource provisioning service

• Develop a new scheduling service

Among all the options presented before only the first four options can be easily exploited

to extend and to innovate the dynamic provisioning infrastructure. The latest two options

allow developers to completely change the architecture of the dynamic provisioning and

implement their own infrastructure.

In this document we will discuss the first three options, and provide few hints on how to

develop a new resource provisioning service that can be integrated into the existing

infrastructure.

4.1.1 Developing New Scheduling Algorithms

Scheduling algorithm control the execution of distributed application in the Aneka Cloud

and the allocation of tasks to the resources available in the infrastructure. By using

dynamic provisioning it is possible to integrate new resources into the infrastructure for a

period of time that is subject to the needs of applications. Scheduling algorithms are

generally the components that have the knowledge of when new resources are needed and

for how long. Indeed, they are the enabler for the resource provisioning since in most of

the cases they trigger resource provisioning requests and command the resource

provisioning service to release virtual resources when they are no longer needed.

Support for scheduling in Aneka differentiates the logic with which tasks are allocated to

resources from all the machinery required to interact with the Aneka runtime. This

architecture makes possible to easily plug into the existing scheduling services new

scheduling algorithms with a minimal knowledge of the internals of the Aneka runtime. It

does so by defining to interfaces ― namely ISchedulerContext and ISchedulingAlgorithm ―

that represent the interface with the Aneka runtime and the scheduling algorithm

respectively. These interfaces and bases classes from which implement the components

are part of the Aneka.Scheduling library.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 26

using Aneka.Provisioning;

using Aneka.Scheduling.Entity;

using Aneka.Scheduling.Event;

namespace Aneka.Scheduling

{

 public interface ISchedulerContext

 {

 bool SupportsProvisioning { get; }

 event EventHandler<SchedulingEventArgs> AssignTask;

 event EventHandler<ProvisionResourcesArgs> ProvisionResources;

 event EventHandler<ReleaseResourcesArgs> ReleaseResources;

 void Start();

 void Stop();

 void AddTasks(params Task[] tasks);

 void AddResources(params Resource[] resources);

 void SetScheduler(ISchedulerContext scheduler);

 }

}

Listing 1 - ISchedulingAlgorithm interface

Listing 1 shows the ISchedulingAlgorithm interface, which represents the contract that

each scheduling algorithm has to fulfill. The interface is minimal and provides some

methods that are used by the Aneka runtime for starting, stopping the algorithm, adding

tasks and resources and providing a reference to the scheduler context. The algorithm

provides a feedback to the Aneka runtime about its scheduling decisions through the

events exposed by the interface. For what concerns dynamic provisioning there are two

members of interest:

• SupportsProvisioning: this is a boolean property that is set to true if the algorithm

supports dynamic provisioning.

• ProvisionResources: this event is triggered when the scheduling algorithm issue a

request for additional resources.

The algorithm works collaboratively with the Aneka runtime and interfaces with it by

means of the ISchedulerContext interface reported in Listing 2.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 27

using Aneka.Provisioning;

using Aneka.Scheduling.Entity;

using Aneka.Scheduling.Event;

using Aneka.Scheduling.Runtime;

namespace Aneka.Scheduling

{

 public interface ISchedulerContext

 {

 ISchedulingAlgorithm SchedulerAlgorithm { get; set; }

 ISchedulingHandler SchedulingHandler { get; set; }

 event EventHandler<ResourceEventArgs> ResourceDisconnected;

 event EventHandler<ResourceEventArgs> ResourceReConnected;

 event EventHandler<ProvisionEventArgs> ResourceProvisionProcessed;

 event EventHandler<ProvisionResourcesArgs> ResourceProvisionRequested;

 event EventHandler<ReleaseResourcesArgs> ResourceReleaseRequested;

 event EventHandler<TaskEventArgs> TaskFinished;

 event EventHandler<TaskEventArgs> TaskFailed;

 event EventHandler<TaskEventArgs> TaskAborted;

 event EventHandler<TaskEventArgs> TaskRequeued;

 }

}

Listing 2 - ISchedulerContext interface

The properties and events of the interface only a subset of them are of interest for the

scheduling algorithm. In particular for what concerns the normal operations of the

scheduling algorithm:

• ResourceDisconnected and ResourceReconnected: notify the scheduling algorithm

that a resource has disconnected or reconnected from a temporary disconnection.

• TaskAborted, TaskFinished, TaskFailed, and TaskRequeued: these events notify

scheduling algorithm of the status of the tasks.

For what concerns the dynamic provisioning infrastructure only one event is of interest for

the scheduling algorithm: ResourceProvisionProcessed. This event provides information

about the outcome of a resource provisioning request made earlier by the scheduling

algorithm.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 28

The general execution flow of the scheduling algorithm is managed in an internal thread

that is controlled by the Start and Stop methods by the Aneka runtime. The scheduling

decisions taken by the algorithm are triggered by the events exposed by the

ISchedulerContext interface and by the AddTasks and AddResources methods.

Aneka features several built-in scheduling algorithms that can be used and some of them

are designed to support dynamic provisioning of virtual resources by leveraging the

resource provisioning service. These are all defined in the namespace

Aneka.Scheduling.Algorithm.Independent, which can be found in the same library. Among

all the algorithms the interesting algorithms for provisioning are:

• DeadlinePriorityProvisioningAlgorithm: this algorithm leverages dynamic

provisioning in order to schedule the execution of the tasks within the expected

deadline. If the local resources are not enough to execute all the tasks in time, a

request for additional resources is issued.

• FixedQueueProvisioningAlgorithm: this algorithm leverages dynamic provisioning in

order to maintain the size of the scheduling queue within a specific range. It is

possible to define an upper and a lower threshold.

Other base classes are provided, from which to start the implementation of new

scheduling algorithms that support dynamic provisioning:

• ProvisioningAlgorithmBase: this class provides a base abstract class for all dynamic

provisioning algorithms. The algorithm provides a basic management of the

provisioning request that have been issued.

• ApplicationAwareProvisioningAlgorithm: this algorithm is specialized for the

scheduling a collection of tasks as a whole in order to ensure that some specific

QoS parameters that are defined for the application are met.

Developers can start designing their new scheduling algorithms and new strategies for

triggering resource provisioning by extending one of these two classes or specializing the

previous two algorithms.

4.1.2 Developing New Provisioning Strategies

Provisioning strategies are useful for implementing provisioning policies. They constitute

the best solution when it is necessary to change only the logic in which the pools are

selected in order to satisfy a provision request. The implementation of new provisioning

strategy frees developers from implementing all the machinery that is needed to:

• Manage resource pools

• Interact with resource providers

• Interact with the Aneka runtime

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 29

These strategies can be easily plugged into the existing infrastructure since the default

resource pool manager that comes with the Aneka installation provides the capability of

being configured with provisioning strategies.

The Aneka APIs provide developers with the IProvisionStrategy interface and two

implementation classes, namely ProvisionStrategyBase and DefaultProvisionStrategy, for

creating new provisioning policies.

using Aneka.Provisioning;

namespace Aneka.Runtime.Provisioning

{

 public interface IProvisionStrategy

 {

 void Init(IDictionary<string, string> properties);

 IResourcePool Select(List<IResourcePool> pools, ProvisionRequest request);

 void Update(ProvisionResponse response);

 void Shutdown();

 }

}

Listing 3 - IProvisionStrategy interface

Listing 3 describes the operations that are exposed by the IProvisionStrategy interface.

These operations basically allow strategy initialization and finalization, pool selection, and

strategy update. More precisely:

• The Init method initializes the strategy. It accepts a dictionary of string properties

that are passed by the default resource pool manager.

• The Select method constitutes the core of the strategy, and it is called by the

default pool manager when it is necessary to identify the best pool that is available

for satisfying the given provisioning request.

• The Update method is called by the default resource pool manager to give

feedback on provisioning request.

• The Shutdown method is used to release all the internal resources allocated by the

strategy and it is called by the default pool manager when it is shut down.

A skeleton implementation of this interface can be found in the ProvisionStrategyBase

class. It provides the basic locking logic to ensure that the methods of the strategy are

called in a thread-safe context and template method that needs to be implemented by the

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 30

inherited classes. An extension to this class is the DefaultProvisionStrategy that

implements the simple provisioning logic:

• If a provisioning request has a suggested pool name, it selects the pool named

• If a provisioning request does not have a pool name indicated it select the first

available pool

This is the strategy that is currently used in the default resource pool manager.

4.1.3 Developing New Resource Pool Managers

The primary purpose of resource pool managers is to manage different resource pools and

providing specific resource provisioning and allocation strategies. Implementing a new

resource pool manager if the best solution whether the reason for customizing the

resource provisioning infrastructure is:

• To develop new advanced strategies for resource provisioning

• To provide a better and advanced pool management services

Resource pool managers are completely separated by the Aneka runtime and the

development of a new pool manager can be easily integrated into the existing runtime for

dynamic provisioning. The implementation of a new resource pool manager is mostly

concerned with providing new methods and algorithms for pool management rather than

resource provisioning policies. These can be more easily implemented by implementing

resource provisioning strategies as described in the previous section. The only reason for

implementing a pool manager in order to develop new provisioning policies is because the

options given with the solution discussed in the previous section are not enough and a

finer control on the infrastructure is required.

The Aneka APIs provide useful extension points for implementing a new resource pool

manager:

• Interface IResourcePoolManager: this interface represents the contract that all the

resource pool manager need to fulfill in order to be plugged into the existing

infrastructure and manage resource pools.

• Class ResourcePoolManagerBase: this is a base abstract class that can be used to

implement a new resource pool manager. This class provides most of the

functionalities that are required to implement a basic resource pool and provides a

set of template methods that can be further specialized to implement resource

provisioning policies.

• Class ResourcePoolManager: this class is the default resource pool manager used

within Aneka and constitutes a working implementation of a pool manager. The

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 31

manager abstracts the pool selection process for a given provisioning request by

using resource provisioning strategies that can be configured. This class is useful

when it is necessary to provide small changes to the existing pool manager in order

to address the needs of the provisioning scenario.

Listing 4 shows the IResourcePoolManager methods, events, and properties. This interface

provides minimal functionalities:

• The Init method is used to initialize the pool manager and it takes as a parameter a

dictionary of string properties. At the moment the only property that it is passed

inside the dictionary is the URI of the Aneka master container (property name:

IndexServerUri) and the security key that is used for communications (property

name: SharedAuthenticationKey). This method is called by the hosting resource

provisioning service when the service starts.

• The Provision method is used to issue a resource provisioning request and it is

called by the hosting provisioning service to forward to the pool manager the

provisioning request.

• The Release method is used to release a list of virtual resources that have been

previously provisioned. This method is called by the hosting provisioning service

when some virtual resources are no longer needed.

• The Shutdown method is called when the service is stopped and it is expected that

the pool releases all its resources.

using Aneka.Provisioning;

namespace Aneka.Runtime.Provisioning

{

 public interface IResourcePoolManager : IProvisionEventSource

 {

 List<IResourcePool> ResourcePools { get; set; }

 event EventHandler<ResourceActiveEventArgs> ResourceActive;

 void Init(IDictionary<string, string> properties);

 void Provision(ProvisionRequest request);

 void Release(IList<string> resources);

 void Shutdown();

 }

}

Listing 4 - IResourcePoolManager interface

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 32

• The ResourcePools list provides access to the list of IResourcePool instances that

are configured with the resource pool manager.

The interface designed for the resource pool manager uses event notification for providing

information about the provisioning requests and the status of virtual resources. In

particular three different events are provided:

• The ResourceActive event fires when a virtual instance has become reachable.

• The IProvisionEventSource.ProvisionCompleted fires when a request for resource

provisioning has been successfully submitted.

• The IProvisionEventSource.ProvisionFailed fires when a resource provisioning

request fails for any reason. The information in the event argument instance can

help the event handlers to identify the reason of the failure.

It is responsibility of the resource pool manager implementation to appropriately fire

these events.

Listing 5 shows the IProvisionEventSource interface from which the IResource-PoolManager

interface inherits.

using Aneka.Provisioning;

namespace Aneka.Runtime.Provisioning

{

 public interface IProvisionEventSource

 {

 event EventHandler<ProvisionEventArgs> ProvisionCompleted;

 event EventHandler<ProvisionEventArgs> ProvisionFailed;

 }

}

Listing 5 - IProvisionEventSource interface

4.1.4 Developing New Resource Pools

Developers might want to implement a new resource pool when it is necessary to integrate

a new resource provider that is not actually supported by Aneka or when it is necessary to

provide a different way in which Aneka should talk with the resource provider.

The Aneka APIs provide the IResourcePool interface and the ResourcePoolBase class as

extension points for integrating new resource pools. The ResourcePoolBase class is a

simple skeleton with a minimal set of functionalities implemented, while most of the

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 33

methods exposed by the IResourcePool interface have to be implemented. This class is a

useful starting point for implementing a new resource pool.

Listing 6 describes the IResourcePool interface. The interface extends the

IProvisionEventSource and uses the same mechanism of the resource pool manager

implementation to notify client components (i.e. the resource pool manager or any other

code section registered to these events) about a successful provision request submission or

a failure. Moreover, the interface exposes a set of properties that provide some

information about the pool and simplify the interaction with the pool manager:

using Aneka.Provisioning;

namespace Aneka.Runtime.Provisioning

{

 public interface IResourcePool : IProvisionEventSource

 {

 string Name { get; set; }

 ResourcePoolView PoolDescription { get; }

 string IndexServerUri { set; }

 bool SupportPushMode { get; }

 IResourcePoolManager PoolManager { set; }

 void Init(IDictionary<string, string> properties);

 void Provision(ProvisionRequest request);

 string PingResource(string resource);

 void Release(IList<string> resources);

 List<ResourcePoolItem> List();

 void Terminate();

 }

}

Listing 6 - IResourcePool interface

• Name: defines the name of the pool. The name of the pool should be a unique

identifier and can be used by the pool manager or other components to identify a

specific pool.

• PoolDescription: provides information about the pool and its current status.

• PoolManager: is a reference to the pool manager instance that is controlling the

pool. This property has to be set by the pool manager implementation.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 34

• IndexServerUri: is the address of the Aneka master container that manages the

Cloud in which the resource provisioning service operates. This property has to be

set by the pool manager implementation.

• SupportPushMode: this is a property that provides information about the behavior

of the resource provider managed by the pool. In particular, if the value of such a

property is true this means that the pool can automatically configure the virtual

instances that are requested with an instance of the Aneka container running.

Hence, when the provisioning request is successfully submitted it is possible to ping

the virtual resource to get the URI of the Aneka container instance running on it.

This operation has to be performed by the pool manager implementation by

calling IResourcePool.PingResource.

The list of operations supported by the pool manager interface is described as follows:

• Init: this method passes a dictionary of string properties to the resource pool.

These properties are runtime properties that are set by the Aneka runtime and

provide information about the runtime context. This method is used to initialize

the pool.

• Provision: this method is used to issue a resource provisioning request and it is

called by the pool manager to forward to the pool the provisioning request.

• Release: this method is used to release a list of virtual resources that have been

previously provisioned. This method is called by the resource pool manager.

• Terminate: this method is called when the pool manager is shutting down and the

pool should release all the resources that have been acquired as a side effect of

this call.

• PingResource: this method returns the URI of the Aneka container instance that is

running on the virtual resource represented by the resource identifier passed as

parameter. This method is useful when the pool supports the push mode and

automatically configures the virtual machine requested with an instance of the

Aneka container.

The ResourcePoolBase class, as already noticed, provides a skeleton implementation of a

resource pool. It provides an implementation of all the properties exposed by the

interface and an extensible infrastructure managing the list of resources that are currently

provisioned. An interesting feature of this class is that the infrastructure supports the

management of virtual machine instances that have been released by the pool manager

and whose time slice has not been expired yet. Most of the IaaS providers deliver virtual

machine resources on a time slice basis and this feature is an add-on to the skeleton

implementation that simplifies the implementation of resource providers.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 35

4.1.5 Developing a New Resource Provisioning Service

The implementation of a resource provisioning service is the most radical and powerful

solution for customizing the resource provisioning infrastructure. The implementation of

the resource provisioning service provides developers with a complete control on the

provisioning mechanics of the infrastructure. In particular allows controlling the behavior

of the following aspects:

• Resource pool management

• Interaction with the Aneka runtime environment

• Definition of the provisioning strategies and policies

• Management of virtual resources and monitoring

The resource provisioning services groups all the features that are exposed by the other

provisioning components and presents them as a whole to the Aneka runtime. It can be

considered as a black box that manages provisioning of virtual resources. It is up to the

developers to choose how to organize its internal structure and how to perform the

provisioning operations required by the Aneka runtime.

The Aneka resource provisioning infrastructure is the result of the coordinated activity of

the scheduling services and the provisioning service. In order to integrate a new resource

provisioning service with the existing scheduling services it is necessary to implement

handlers to some specific messages that are used by scheduling services to control

provision and control virtual resources. The Aneka APIs provide skeleton classes from

which where to start the development of a resource provisioning service. These are:

• ResourceProvisioningServiceBase: this is an abstract base class that can be used to

create new provisioning services. The class provides the template methods for the

basic resource provisioning message handling and implements the basic logic of the

service implementation and interaction with the Aneka runtime. The template

methods that are left to inherited classes are the following:

o HandleProvisioningRequestMessage: this method is called when the

provision of a set of virtual resources is triggered by some component in the

Aneka runtime (most likely another service such as the scheduling services).

As a parameter to the method an instance of the class

ProvisionRequestMessage is passed. This class contains the information

about the provisioning request made and exposes it with the Request

property (type: Aneka.Provisioning.ProvisionRequest).

o HandleReleaseRequestMessage: this method is called when the Aneka

runtime is signaling the provisioning service to release a list of resources

that are currently provisioned. As a parameter to the method an instance of

the class ReleaseRequestMessage is passed. This class contains the

information about virtual resources to release.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 36

o HandleProvisionQueryMessage: this method is called whenever a client or

component of the Aneka runtime wants to query the status of the resource

provisioning infrastructure. It is possible to query for one of the following

elements: virtual resources, provision requests, resource pools. This method

takes as a parameter an instance of the ProvisionQueryMessage, which

specifies the query that needs to be performed.

Other possible extension points in the same class are the following:

o GetClient: this method is called by the infrastructure whenever the

resource provisioning service is asked to provide a client that is able to

interact with the service and dealing with all the message-based protocol

required by the resource provisioning service. The current implementation

of the service return the default provisioning client which allows any

software component to interact with the resource provisioning service in

order to perform the operations described above. These operations are

made available through the interface

Aneka.Provisioning.IProvisioningClient. If the specific resource provisioning

service implemented provides a more complex set of services it is possible

to return a service that extends this interface with additional features by

overriding this method.

NOTE: By design it is expected that each provisioning

infrastructure will support the basic operations exposed by the

interface. Hence, all the provisioning client implementations

have to extend this interface if they want to be plugged within

the provisioning infrastructure. Aneka provides a default

implementation for this client which is sufficient in most of the

cases and if no additional operations have to be exposed. In case

additional operations have to be made available the best

practice is to define an interface that extends the

IProvisioningClient interface and expose the additional methods.

o ProcessMessage: this method implements the method dispatcher that

handles the incoming message and calls the appropriate template method.

In case of implementations providing additional features the behavior of

this method needs to be extended to manage the additional features

implemented. This method takes as a parameter an instance of the class

ProvisionMessage that is the base class for all the resource provisioning

messages. Hence, it does not manage the ClientMessage, which is a general

Aneka message used to obtain a client for a service. Should a more radical

implementation of the message handling be implemented, it is possible to

override the HandleMessage method that is the main entry point in each

service for message handling.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 37

The other methods defined simply provide an implementation of the template methods

defined in the ServiceBase class and do not perform any operation.

• ResourceProvisioningService: this class defines the reference implementation of

the resource provisioning service and the one that is actually used inside Aneka. It

extends the ResourceProvisioningBase class and integrates a resource pool manager

and a provisioning store that can be configured by the user. The resource pool

manager is configured with the default implementation and the store with an in

memory volatile storage for the provisioning requests.

Developers can use these two classes as a starting point for defining a new resource

provisioning service. The extension of the ResourceProvisioningServiceBase class provides

more freedom for what concerns the logic and the implementation of the service but also

less built-in features. For example it is possible to implement a service that does not use

pools for virtual resource management. On the other hand, the

ResourceProvisioningService class provides developer with a working implementation of a

service and ready to use components, but limits the extension points and it has a more

rigid logic.

4.2 Programming Provisioning From Client Applications

The resource provisioning infrastructure has been designed serve both the internal needs

of the Aneka middleware and the external needs of specific client applications. As a

result, client applications can easily interact with the resource provisioning service and

provision virtual resources, query the resource provisioning system, and release resources.

The set of classes, interfaces, and components that used to interact with the resource

provisioning service are defined in the Aneka.Provisioning namespace inside the Aneka.dll

library and there is no need to reference any other library - except than Aneka.Data.dll

and Aneka.Util.dll – for interacting with the provisioning infrastructure.

The main component of the support for client based programming is the resource

provisioning client, which abstracts the interaction with the installed resource provisioning

service and exposes a set of basic operations. These operations are defined in the

IProvisioningClient interface.

using Aneka.Runtime;

namespace Aneka.Provisioning

{

 public interface IProvisioningClient : IServiceClient

 {

 ProvisionResponse Provision(ProvisionRequest request);

 Exception Release(string resourceId);

 Exception Release(IList<string> resources);

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 38

 IList<ResourcePoolView> ListPools();

 IList<ResourcePoolItemView> QueryPool(string poolName);

 ResourcePoolItemView QueryResource(string resourceId);

 IList<ResourcePoolItemView>QueryResources(IList<string> resources);

 ProvisionResponse QueryRequest(string requestId);

 IList<ProvisionResponse> QueryRequests(IList<string> requests);

 }

}

Listing 7 - IProvisioningClient interface

The interface exposes the basic set of operations that all the resource provisioning

services should support. Since Aneka allows for the integration of third party and custom

solutions for resource provisioning one client will not fit all the possible scenarios. In

particular, specific implementation of resource provisioning service might expose

additional operations not available through this interface. This is the reason why Aneka

allows for a dynamic retrieval of the appropriate client instance that is able to properly

interact with the resource provisioning service.

In the previous section we have discussed the extension point provided by the

infrastructure for implementing a new client, in this section we will illustrate how to

retrieve and use these client.

It is possible to obtain a client for the resource provisioning service by using the

ProvisioningClient class and invoking the GetClient(Aneka.Entity.Configuration) method.

This method returns an instance implementing the IProvisioningClient interface and takes

as a parameter a configuration object containing all the information that are required by

the client libraries to:

• Contact the Aneka middleware

• Authenticate the request

• Provide additional parameters that might be of use to retrieve the client

Clients, in order to make use of the additional operations exposed necessarily have to cast

the instance returned by the GetClient method to a well known interface or class type

that defines the additional method.

The operations exposed by the IProvisioningClient interface are the following:

• Provision(ProvisionRequest …): allows client to provision a collection of resources.

This method takes as a parameter an instance of the class ProvisionRequest

containing the information about the number of resource to provision, the specific

pool to use (if required), and additional metadata that can help the selection of

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 39

virtual resources. The method returns an instance of the ProvisionResponse class

that contains all the information about the provisioning request issued.

• Release(string …) and Release(IList<string> …): these two methods allows to

release a virtual resource and a list of virtual resources respectively. They take as

input the identifiers of the resources to release and return an exception if some

error occurred while releasing the resources. The list version of the method returns

a list of exceptions (or null values) each of them mapping the outcome of the

release operation of the corresponding identifier in the input list.

• ListPools(): this method returns all the available pools that are managed by the

resource provisioning service and their status. It has been discussed that a specific

implementation could not leverage resource pools. Even in that case the resource

provisioning service should still expose the logical concept of resource pool to the

client. The method returns a list of ResourcePoolView instances containing the

information about the managed pools.

• QueryPool(string …): this method provides the information about a specific

resource pool identifier by the name passed as input parameter (or null if no pool

with that name is found). The method returns an instance of the ResourcePoolView

class containing the information about the selected pool.

• QueryResource(string …) and QueryResources(IList<string> …): these methods

provide information about one and a list of virtual resources respectively. Both of

the two version takes as input parameters the resource identifiers and return

instances of the ResourcePoolItemView class that contain information about the

corresponding resources.

• QueryRequest(string …) and QueryRequests(IList<string> …): these methods

provide information about one and a list of resource provisioning requests. Both of

the two version takes as input parameters the request identifiers and return

instances of the ProvisionResponse class that contain information about the

corresponding requests.

The set of methods that are exposed are enough to provide a basic management of the

resource provisioning infrastructure. Additional properties are exposed by the

IServiceClient interface that helps in identifying the component that is being used:

• ServiceUrl: URI of the Aneka container that is hosting the provisioning service.

• ClientName: name of the provisioning client.

• Service: name of the resource provisioning service that the client is interacting

with.

• Configuration: configuration object that has been used to retrieve the client.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 40

These properties are common to all the dynamic clients that are retrieved with the Aneka

APIs.

As previously discussed the main features of resource provisioning are accessible through

the IProvisioningClient interface. Additional classes are involved in the client management

of resource provisioning; these classes are:

• Aneka.Provisioning.ProvisionRequest: this class encapsulates the information about

a provisioning request. The important bits exposed by this class are the following:

o RequestId: unique identifier of the request (automatically generated).

o Pool: name of the pool to use for the provisioning of resources (if any).

o Resources: number of resources to provision.

o Metadata: a dictionary of string properties that can be used to pass any

additional information to the resource provisioning service.

It is important to notice that the information entered in the metadata dictionary can be of

any nature, and it is up to the resource provisioning service whether to use it or not.

Client applications should also know the name and the meaning of the properties that are

entered in this dictionary, which depend on the specific implementation of the resource

provisioning service.

• Aneka.Provisioning.ProvisionResponse: this class encapsulates the response to a

provisioning request. The most important properties are: RequestId and Status.

The first one identifies the provisioning request that is mapped to this response,

while the second identifies the status of the request and it is of type

ProvisionRequestStatus. The additional information contained in this class is

exposed through the following properties:

o ResourcesProvisioned: number of resources provisioned.

o Resources: is an array of strings containing the identifiers of the virtual

resources if the provisioning request has been satisfied.

o Failure: it is a value from the ProvisionFailure enumeration that identifies

the nature of the failure of the request (in case of failure).

o Exception: it is of type Exception and provides additional information about

the error condition associated with the failure. It might be null.

All these information help the client application to track the provisioning request all over

its life cycle.

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 41

• Aneka.Provisioning.ProvisionFailure: enumerates all the possible reasons of a

failure. The current available values are the following: Temporary, Permanent,

CapacityExceeded, and Other.

• Aneka.Provisioning.ProvisionRequestStatus: enumerated all the possible states of

resource provisioning request. The current available values are the following:

Pending, Succeeded, and Failed.

• Aneka.Provisioning.ResourcePoolView: this class provides a view over a resource

pool. It is merely a container of information about the properties of the pool such

as the name, the type, the number of virtual instances currently allocated and

managed by the pool, and maximum capacity of the pool. Additional information

can be retrieved from the Metadata property that is dictionary of string based

properties.

• Aneka.Provisioning.ResourcePoolItemView: this class provides a view over a virtual

instance managed by a resource pool. It is merely a container of information about

the properties of the virtual resource such as the id, the state, the corresponding

master container URI, and the start time of the instance. Additional information

can be retrieved from the Metadata property that is dictionary of string based

properties.

This set of classes completes the overview of the client API for interacting with the

resource provisioning service. A more extensive treatment of how to program and interact

with the resource provisioning service can be found in the Aneka documentation APIs.

4.3 Observations

This section has covered the basics of the object model and of the software components

that compose the Aneka Resource Provisioning Infrastructure. The object model allows for

a high degree of customization of the infrastructure and encapsulates in specific

components different aspects of the resource provisioning. It is possible to extend the

system by implementing new strategies for provisioning, new scheduling algorithms, new

resource pools and pool managers, or new provisioning services.

The discussion held in this section is a starting point for further exploring the Aneka

Provisioning APIs, which provide a more detailed description of each class and its role

inside the framework.

5 Conclusions

In this document we have described the architecture of the dynamic provisioning

infrastructure in Aneka. This document has also covered how to configure and manage the

supported resource pools by the ResourceProvisioningService, which together with the

scheduling services enable dynamic provisioning in Aneka.

The specific steps that are required to set up the dynamic provisioning infrastructure

through the Aneka Cloud Management Studio have been discussed together on how to

Aneka 5.0 Dynamic Provisioning

Copyright © 2010 Manjrasoft Pty Ltd. 42

collect the required information from the two supported IaaS provider: Amazon EC2 and

GoGrid.

As a final note for developers, a brief insight on the Dynamic Resource Provisioning Object

Model designed in Aneka and its extensibility points has been presented. This section can

be used as a starting point for integrating new resource pools and devising advanced

provisioning and scheduling strategies in Aneka.

