
MANJRASOFT PTY LTD

Developing Task Model Applications

Aneka 3.0

Manjrasoft

5/24/2012

This tutorial describes the Aneka Task Execution Model and explains how to create distributed
applications based on it. It illustrates some examples provided with the Aneka distribution which are
built on top of the Task Model. It provides a detailed step by step guide for users on how to create a
simple application that submit multiple tasks to Aneka and collect the results. After having read this
tutorial the users will be able to develop their own application on top the Aneka Task Model

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd.

Table of Contents

1 Prerequisites ... 1

2 Introduction .. 1

3 Task Model ... 3

3.1 What are Tasks? .. 3

3.2 Working with Tasks .. 3

3.3 AnekaApplication Configuration and Management 10

3.3.1 Getting Information from AnekaApplication .. 10

3.3.2 Application Configuration .. 15

3.3.3 Monitoring: Getting Back Results ... 22

3.3.4 Application Control and Task Resubmission ... 30

4 File Management ... 41

4.1 Aneka File APIs .. 41

4.1.1 File Types .. 44

4.1.2 Path vs VirtualPath, and FileName ... 44

4.1.3 File Attributes ... 45

4.2 Providing File Support for Aneka Applications. .. 45

4.2.1 Adding Shared Files ... 46

4.2.2 Adding Input and Output Files .. 47

4.2.3 Using Files on the Remote Execution Node ... 48

4.2.4 Collecting Local Output Files .. 49

4.3 Observations ... 49

5 Aneka Task Model Samples ... 50

5.1 Renderer ... 50

5.2 POV-Ray and MegaPOV ... 50

5.2.1 Parallel Ray Tracing .. 51

5.2.2 The Example ... 52

5.2.3 Conclusions .. 59

5.3 Convolution .. 59

5.3.1 Convolution Filters and Parallel Execution .. 60

5.3.2 AnekaConvolutionFilter .. 61

5.3.3 Conclusion .. 65

5.4 TaskDemo .. 66

6 Conclusions ... 66

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 1

1 Prerequisites

In order to fully understand this tutorial the user should be familiar with the general

concepts of Grid and Cloud Computing, Object Oriented programming and generics,

distributed systems, and a good understanding of the .NET framework 2.0 and C#.

The practical part of the tutorial requires a working installation of Aneka. It is also

suggested to have Microsoft Visual Studio 2005 (any edition) with C# package installed1

even if not strictly required.

2 Introduction

Aneka allows different kind of applications to be executed on the same grid infrastructure.

In order to support such flexibility it provides different abstractions through which it is

possible to implement distributed applications. These abstractions map to different

execution models. Currently Aneka supports three different execution models:

 Task Execution Model

 Thread Execution Model

 MapReduce Execution Model

Each execution model is composed by four different elements: the WorkUnit, the

Scheduler, the Executor, and the Manager. The WorkUnit defines the granularity of the

model; in other words, it defines the smallest computational unit that is directly handled

by the Aneka infrastructure. Within Aneka, a collection of related work units define an

application. The Scheduler is responsible for organizing the execution of work units

composing the applications, dispatching them to different nodes, getting back the results,

and providing them to the end user. The Executor is responsible for actually executing one

or more work units, while the Manager is the client component which interacts with the

Aneka system to start an application and collects the results. A view of the system is given

in Figure 1.

1 Any default installation of Visual Studio 2005 and Visual Studio 2005 Express comes with all the

components required to complete this tutorial installed except of Aneka, which has to be

downloaded and installed separately.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 2

Figure 1 - System Components View.

Hence, for the Task Model there will be a specific WorkUnit called AnekaTask, a Task

Scheduler, a Task Executor, and a Task Manager. In order to develop an application for

Aneka the user does not have to know all these components; Aneka handles a lot of the

work by itself without the user contribution. Only few things users are required to know:

 how to define AnekaTask instances specific to the application that is being defined;

 how to create a AnekaApplication and use it for task submission;

 how to control the AnekaApplication and collect the results.

This holds not only for the Task Model but for all execution models supported by the

Aneka.

In the remainder of this tutorial will then concentrate on the Task Model, but many of the

concepts described can be applied to other execution models.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 3

3 Task Model

3.1 What are Tasks?

The Task Model defines an application as a collection of tasks. Tasks are independent work

units that can be executed in any order by the Scheduler. Within the Task Model a task

comprises all the components required for its execution on a grid node.

The Task Model is the right solution to use when the distributed application consists of a

collection of independent jobs that are executed on a grid and whose results are collected

and composed together by the end user. In this scenario the user creates a set of tasks,

submits them to Aneka, and waits for the results.

More complex scenarios are characterized by the dynamic creation of tasks while the

application is executing, based on the previously executed tasks. Even in this case, from

the Aneka point of view the tasks submitted for execution are independent and it is

responsibility of the user to ensure the proper execution order and sequencing.

Tasks are sufficiently general abstractions that are useful to model the jobs of

embarrassingly parallel problems. They provide a simple operation Execute through which

the user can specify the computation that can be carried out by the task.

3.2 Working with Tasks

During the execution of the task there are two components that are involved: the

AnekaTask class and the ITask interface.

The AnekaTask class represents the work unit in the Task Model. The user creates

AnekaTask instances configures them and submits them to the grid by means of the

AnekaApplication class. Aneka deals with AnekaTask instances which are then responsible

for executing the job they contain.

namespace Aneka.Tasks

{

 /// <summary>

 /// Class AnekaTask. Represents the basic unit of work

 /// in the Task Model. It wraps a generic task to execute.

 /// </summary>

 public class AnekaTask : WorkUnit

 {

 /// <summary>

 /// Gets the User Task to execute.

 /// </summary>

 public ITask UserTask { get { ... } internal set { ... } }

 /// <summary>

 /// Gets a value indicating whether the current grid task

 /// is running. A grid WorkUnit is considered running if it

 /// is not Unstarted | Stopped | Completed | Rejected | Aborted.

 /// </summary>

 public bool IsRunning { get { ... } }

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 4

 /// <summary>

 /// Creates an instance of the AnekaTask.

 /// </summary>

 /// <param name="task">user task to execute.</param>

 public AnekaTask(ITask task)

 { ... }

 }

}

Listing 1 - AnekaTask class.

Listing 1 presents the public interface of the AnekaTask class. This is a framework class

that is used to wrap the specific user task that will execute once scheduled.

In order to create an AnekaTask instance it is necessary to pass to the constructor a non

null ITask instance. This instance represents the task that will be executed and it is

exposed through the UserTask property. Listing 2 displays the ITask interface. This

interface is very minimal and exposes only one method which is the Execute method. This

method is called when the AnekaTask instance is executed on a grid node. Inside this

method concrete classes have to define the code to perform what is needed for the

specific distributed application that is being implemented.

namespace Aneka.Tasks

{

 /// <summary>

 /// Interface ITask. Defines a contract for task

 /// implementation. It provides an entry point

 /// for specific task execution.

 /// </summary>

 /// <remarks>

 /// Concrete classes must be marked Serializable

 /// or implement the ISerializable interface.

 /// </remarks>

 public interface ITask

 {

 /// <summary>

 /// Executes the task.

 /// </summary>

 public void Execute();

 }

}

Listing 2 - ITask interface.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 5

Concrete classes implementing this interface must be marked Serializable or implement

the ISerializable interface because AnekaTask instances need to be serialized in order to

be transmitted over the network.

As shown above the creation of the work units of the Task Model is really simply and

intuitive. The following steps summarize what is needed to create application specific grid

tasks:

 define a class MyTask which implements ITask and provide the specific code for the

Execute method;

 create as many MyTask instances as needed by your application;

 wrap each MyTask instance into a AnekaTask instance by passing it to the

AnekaTask constructor;

 submit the AnekaTask instances to Aneka by means of the AnekaApplication class.

Listing 3 provides a template code implementing the steps described. In the example the

MyTask class simply evaluates the value of a complex function for the given double value

X, and exposes the result by means of the Value property. The example proposed in the

listing uses the Normal distribution as test function. Obviously, this is a really trivial

example meant only to show how to implement a task.

// File: MyTaskDemo.cs

using Aneka.Entity;

using Aneka.Tasks;

namespace Aneka.Examples.TaskDemo

{

 // Step 1: definition of the MyTask class.

 /// <summary>

 /// Class MyTask. Simple task function wrapping

 /// the Gaussian normal distribution. It computes

 /// the value of a given point.

 /// </summary>

 [Serializable]

 public class MyTask : ITask

 {

 /// <summary>

 /// value where to calculate the

 /// Gaussian normal distribution.

 /// </summary>

 private double x;

 /// <summary>

 /// Gets, sets the value where to calculate

 /// the Gaussian normal distribution.

 /// </summary>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 6

 public double X { get { return this.x; } set { this.x = value; } }

 /// <summary>

 /// value where to calculate the

 /// Gaussian normal distribution.

 /// </summary>

 private double result;

 /// <summary>

 /// Gets, sets the value where to calculate

 /// the Gaussian normal distribution.

 /// </summary>

 public double Result

 { get { return this.result; } set { this.result = value; } }

 /// <summary>

 /// Creates an instance of MyTask.

 /// </summary>

 public MyTask() {}

 #region ITask Members

 /// <summary>

 /// Evaluate the Gaussian normal distribution

 /// for the given value of x.

 /// </summary>

 public void Execute()

 {

 this.result = (1 / (Math.Sqrt(2* Math.PI))) *

 Math.Exp(- (this.x * this.x) / 2);

 }

 #endregion

 }

 // Step 2-4: Task creation and submission

 /// <summary>

 /// Class Program. Simple Driver application

 /// that shows how to create tasks and submit

 /// them to the grid.

 /// </summary>

 /// <remarks>

 /// This class is a partial implementation and does

 /// not provide the complete steps for running the

 /// application on Aneka.

 /// </remarks>

 class MyTaskDemo

 {

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 try

 {

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 7

 // initialize the logger before doing any operation

 // with Aneka.

 Logger.Start();

 AnekaApplication<AnekaTask,TaskManager> app = Setup(args);

 // create task instances and wrap them

 // into AnekaTask instances

 double step = 0.01;

 double min = -2.0;

 double max = 2.0;

 while (min <= max)

 {

 // Step 2. create a task instance

 MyTask task = new MyTask();

 task.X = min;

 // Step 3. wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // Step 4. Submit the execution

 app.ExecutionWorkUnit(gt);

 min += step;

 }

 // more code to follow...

 // see later in the tutorial

 //

 }

 catch(Exception ex)

 {

 // Dump error to console

 IOUtil.DumpErrorReport(ex, "Aneka Task Demo – Error Log");

 }

 finally

 {

 // when all the threads are gone

 // stop the logger

 Logger.Stop();

 }

 }

 /// <summary>

 /// Application Setup method.

 /// </summary>

 /// <param name="args">program arguments</param>

 private static AnekaApplication<AnekaTask,TaskManager>

 Setup(string[] args)

 { }

}

Listing 3 - Task creation and submission.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 8

Listing 3 describes the basic steps required to submit a collection of tasks to Aneka. In the

following we will discuss step by step the operations that are required to develop a

complete application. It is important to notice that each application using the Aneka APIs

requires a basic try { } catch { ... } finally { ... } block that is used to ensure a proper

initialization of the environment as well as a proper release of resources. In particular the

it is necessary to perform the following steps:

 Initialize the Logger class at the beginning of the try {...} block. This operation

activates the logger and all the resources required to provide a solid and reliable

logging. This operation is generally not required because the logger will

automatically initialize at the first call but it is a good practice to explicitly call

the logger.

 Provide a catch block intercepting all the exceptions occurring in the main thread.

It is possible to use the IOUtil.DumpErrorReport(....) method to properly log the

content of the exception to a file. The method provides different overloads that

allow users to specify for example an header or the name of the log file. The

version used in the example creates a log file named error.YYYY-MM-DD_HH-

mm-ss.log to the application base directory.

 Finalize the logger in the finally {...} block by calling Logger.Stop().This operation

ensures that all the resources required by the logging are properly released and

that there are no threads still running at the end of the application.

As it can be seen, in order to use the Task Model we have to include the namespaces

Aneka.Tasks and Aneka.Entity. In general, any application that is based on a specific

programming model supported by Aneka relies on two different set of dependencies:

 Core APIs: these dependencies are common to all programming model and are

constituted by the following three libraries:

o Aneka.dll (Namespaces: Aneka, Aneka.Entity, Aneka.Security): core classes

of the common API (i.e.: WorkUnit, AnekaApplication, Configuration);

NOTE: among all the three operations listed above the most

important one is the finalization of the logger. The Logger is a static

class that provides logging capabilities to all the components of Aneka

and uses an asynchronous model to log messages and raise log events.

If the user forgets to call Logger.Stop() the thread used to raise log

events will keep running thus preventing the termination of the

application. It is a safe practice to put this operation within a finally

block so that it is ensured that it is executed.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 9

o Aneka.Data.dll (Namespaces: Aneka.Data, Aneka.Data.Entity): classes

supporting file management (i.e.: FileData, HostData);

o Aneka.Util.dll (Namespace: Aneka): support classes used by the common

APIs such as the Logger and IOUtil classes.

 Programming Model APIs: these dependencies are specific to the programming used

and in the case of the Task Model consist in the Aneka.Tasks.dll. In general the

APIs of a programming model are organized into three different namespaces that

separate the components required for executing that model:

o Aneka.[Model] (assembly: Aneka.[Model].dll)

o Aneka.[Model].Scheduling (assembly: Aneka.[Model].Scheduling.dll)

o Aneka.[Model].Execution (assembly: Aneka.[Model].Execution.dll)

In order to develop an application based on a specific programming model it is

necessary to reference only the first assembly, which contains the core elements of

the model. The other two components are only required by the Aneka container for

respecively coordinate the execution of the model and execute their specific units

of computation.

All these libraries are located into the [Aneka Installation Directory]\bin directory and

need to be copied into the directory of the TaskDemo project to successfully build the

application.

It is important to notice that the MyTask class needs to be marked Serializable in order to

be used as an ITask instance. Once the MyTask class has been defined, the submission of

tasks to Aneka is really simple: we need just to configure the tasks with the required data

for the computation, wrap them into a AnekaTask instance and submit it by using the

AnekaApplication instance. On the grid node the Execute method will be invoked and

after its execution the task will be sent back to the user. In order to submit tasks it is

important to correctly setup the AnekaApplication instance.

Listing 3 contains almost everything needed to submit tasks to Aneka2. Once we have set

up a Visual Studio project referencing the previous mentioned assemblies it is only

necessary to write the content of Listing 3 and compile it as a console application. We can

also build the application from the command line by using the following command:

csc /r:System.dll /r:Aneka.Tasks.dll /r:Aneka.dll /r:Aneka.Data.dll

/r:Aneka.Util.dll /main:Aneka.Examples.Program /out:MyTaskDemo.exe

/target:exe MyTaskDemo.cs

2 For now we just skip the definition of the Setup method and we assume it as provided.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 10

Let us inspect the previous command line. It tells the C# compiler to reference the

previously mentioned assembly, to produce an executable whose name is MyTaskDemo.exe

by compiling the MyTaskDemo.cs file.

3.3 AnekaApplication Configuration and Management

So far we just saw how to create tasks and submit tasks to Aneka by means of the

AnekaApplication class. We did not say anything about how to configure a

AnekaApplication instance, monitor its execution, and getting the results back. These

operations are fundamental when working with the Task Model because the AnekaTask

class does not provide any feedback during execution, but the results of the computation

are obtained by interacting with the AnekaApplication instance.

3.3.1 Getting Information from AnekaApplication

The AnekaApplication class represents the gateway to a given Aneka grid. In order to

interact with an installation of Aneka it is necessary to create and configure a

AnekaApplication instance. This class provides:

 properties for querying the application status and retrieving general information;

 methods for submitting jobs and controlling the execution;

 events for monitoring the execution and getting the results of the computation.

Listing 4 provides a complete reference of the AnekaApplication public interface.

namespace Aneka.Entity

{

 /// <summary>

 /// Class AnekaApplication. Represents an application which can be executed on

 /// Aneka grids. It manages a collection of work units which are submitted to

 /// the grid for execution.

 /// </summary>

 /// <typeparam name="W">work unit specific type</typeparam>

 /// <typeparam name="M">application manager</typeparam>

 public class AnekaApplication<W, M>

 where W : WorkUnit

 where M : IApplicationManager, new()

 {

 #region Properties

 /// <summary>

 /// Gets the home directory used by the application to store files.

 /// </summary>

 public string Home { get { ... } }

 /// <summary>

 /// Gets the application state.

 /// </summary>

 public ApplicationState State { get { ... } }

 /// <summary>

 /// Gets the underlying application manager.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 11

 /// </summary>

 public M ApplicationManager { get { ... } }

 /// <summary>

 /// Gets true if the application is finished.

 /// </summary>

 public bool Finished { get { ... } }

 /// <summary>

 /// Gets, sets the user credential

 /// required to execute the application.

 /// </summary>

 public ICredential UserCredential { get { ... } set { ... } }

 /// <summary>

 /// Gets the application identifier.

 /// </summary>

 public string Id { get { ... } }

 /// <summary>

 /// Gets the application creation

 /// date and time.

 /// </summary>

 public DateTime CreatedDateTime { get { ... } }

 /// <summary>

 /// Gets, sets the application display name.

 /// The application display name is the one

 /// that is used for display purposes.

 /// </summary>

 public string DisplayName { get { ... } set { ... } }

 #endregion

 #region Constructors

 /// <summary>

 /// Creates a AnekaApplication instance with

 /// the given user credentials.

 /// </summary>

 /// <param name="configuration">configuration</param>

 public AnekaApplication(Configuration configuration) { ... }

 /// <summary>

 /// Creates a AnekaApplication instance with the

 /// given display name and configuration.

 /// </summary>

 /// <param name="displayName">application name</param>

 /// <param name="configuration">configuration</param>

 public AnekaApplication(string displayName, Configuration configuration)

 { ... }

 #endregion

 #region Events

 /// <summary>

 /// Fires whenever a work unit belonging to the application

 /// changes status to finished.

 /// </summary>

 public event EventHandler<WorkUnitEventArgs<W>> WorkUnitFinished;

 /// <summary>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 12

 /// Fires whenever a work unit belonging to the application

 /// changes status to failed.

 /// </summary>

 public event EventHandler<WorkUnitEventArgs<W>> WorkUnitFailed;

 /// <summary>

 /// Fires whenever a work unit belonging to the application

 /// changes status to failed.

 /// </summary>

 public event EventHandler<WorkUnitEventArgs<W>> WorkUnitAborted;

 /// <summary>

 /// Fires when application execution is completed.

 /// </summary>

 public event EventHandler<ApplicationEventArgs> ApplicationFinished;

 #endregion

 #region Work Units Management

 /// <summary>

 /// Adds a work unit to the application.

 /// </summary>

 /// <param name="workUnit">work unit</param>

 public void AddWorkUnit(W workUnit) { ... }

 /// <summary>

 /// Deletes a work unit from the list of the

 /// work units of the application.

 /// </summary>

 /// <parameter name="workUnit">work unit</param>

 public void DeleteWorkUnit(W workUnit) { ... }

 /// <summary>

 /// Gets the work unit corresponding to

 /// the given index.

 /// <summary>

 /// <param name="index">work unit string identifier</param>

 public W this[string index] { get { ... } }

 /// <summary>

 /// Adds the given dependencies to the dependencies

 /// statically inferred by using reflection.

 /// <summary>

 /// <param name="dependencies">list of dynamic dependent modules</param>

 public void ProvideDynamicDependencies(IList<ModuleDependency>

dependencies)

 { ... }

 #endregion

 #region Execution

 /// <summary>

 /// Submits the application to the grid.

 /// </summary>

 public void SubmitExecution() { ... }

 /// <summary>

 /// Execute a work unit while application is running...

 /// </summary>

 /// <param name="workUnit">work unit</param>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 13

 public void ExecuteWorkUnit(W workUnit) { ... }

 /// <summary>

 /// Stop the single work unit.

 /// </summary>

 /// <param name="workUnitId">work unit identifier</param>

 public void StopWorkUnit(string workUnitId) { ... }

 /// <summary>

 /// Stop the execution of application.

 /// </summary>

 public void StopExecution() { ... }

 #endregion

 #region File Management

 /// <summary>

 /// Adds the selected file to the list of files shared among

 /// all the work units.

 /// </summary>

 /// <param name="filePath">path to the file to add</param>

 public void AddSharedFile(string filePath) { ... }

 /// <summary>

 /// Removes the selected file from the list of files shared among all the

 /// work units.

 /// </summary>

 /// <param name="filePath">path to the file to remove</param>

 public void RemoveSharedFile(string filePath) { ... }

 #endregion

 }

}

Listing 4 - AnekaApplication class public interface.

The first thing that can be noticed that the AnekaApplication class is a generic type. And

that it is specialized during instantiation with the specific execution model we want to

use. We need to provide two different elements:

 WorkUnit specific type W;

 IApplicationManager specific type M;

These elements are strongly coupled and cannot be chosen separately. The mapping is the

following:

 W: AnekaTask then M: TaskManager;

 W: AnekaThread then M: ThreadManager;

 ...

The AnekaApplication class exposes some properties that are useful to monitor the status

of the application and provide information about it. For example we can check the

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 14

boolean property Finished to know whether the application is terminated or not. For a

more detailed information about the execution status the can check the State property.

The state property is defined as follows:

namespace Aneka.Entity

{

 /// <summary>

 /// Enum ApplicationState. Enumerates the different states through which the

 /// application transit.

 /// </summary>

 [Serializable]

 [Flags]

 public enum ApplicationState

 {

 /// <summary>

 /// Initial state of the application.

 /// </summary>

 UNSUBMITTED = 1,

 /// <summary>

 /// This flag is set when the application is submitted [transient state].

 /// </summary>

 SUBMITTED = 2,

 /// <summary>

 /// This flag is set when the application is running.

 /// </summary>

 RUNNING = 4,

 /// <summary>

 /// This flag is set when the application completes.

 /// </summary>

 FINISHED = 8,

 /// <summary>

 /// If this flag is set an error is occurred.

 /// </summary>

 ERROR = 16

 }

}

Listing 5 - ApplicationState enumeration.

Other useful informations are:

 Id: automatically generated unique identifier for the application.

 DisplayName: gets and sets the name of the application. This information is only

used for recording purposes and visualization.

 CreatedDateTime: gets the creation date of the application.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 15

 UserCredential: gets and sets the user credential used to authenticate the client

application to Aneka.

The AnekaApplication class provides also access to the underlying application manager by

means of the ApplicationManager property. Only sophisticated applications that require a

finer control on the task execution and monitoring require the user to interact with the

application manager. These issues go beyond the scope of this tutorial and will not be

addressed anymore.

3.3.2 Application Configuration

In order to create run the Task Model we need to create the AnekaApplication instance

first. While it is possible to omit the display name of the application, we need to provide a

Configuration object which tunes the behavior of the application being created.

namespace Aneka.Entity

{

 /// <summary>

 /// Class Configuration. Wraps the configuration parameters required

 /// to run distributed applications.

 /// </summary>

 [Serializable]

 public class Configuration

 {

 /// <summary>

 /// Gets, sets the user credentials to authenticate the client to Aneka.

 /// </summary>

 public virtual ICredential UserCredential { get { ... } set { .. } }

 /// <summary>

 /// If true, the submission of jobs to the grid is performed only once.

 /// </summary>

 public virtual bool SingleSubmission { get { ... } set { ... } }

 /// <summary>

 /// If true, uses the file transfer management system.

 /// </summary>

 public virtual bool UseFileTransfer { get { ... } set { ... } }

 /// <summary>

 /// Specifies the resubmission strategy to adopt when a task fails.

 /// </summary>

 public virtual ResubmitMode ResubmitMode { get { ... } set { ... } }

 /// <summary>

 /// Gets and sets the time polling interval used by the application to

 /// query the grid for job status.

 /// </summary>

 public virtual int PollingTime { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the Uri used to contact the Aneka scheduler service which

 /// is the gateway to Aneka grids.

 /// </summary>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 16

 public virtual Uri SchedulerUri { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the path to the local directory that will be used

 /// to store the output files of the application.

 /// </summary>

 public virtual string Workspace { get { ... } set { ... } }

 /// <summary>

 /// If true all the output files for all the work units are stored

 /// in the same output directory instead of creating sub directory

 /// for each work unit.

 /// </summary>

 public virtual bool ShareOutputDirectory { get { ... } set { ... } }

 /// <summary>

 /// If true activates logging.

 /// </summary>

 public virtual bool LogMessages { get { ... } set { ... } }

 /// <summary>

 /// Creates an instance of the Configuration class.

 /// </summary>

 public Configuration() { ... }

 /// <summary>

 /// Loads the configuration from the default config file.

 /// </summary>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration() { ... }

 /// <summary>

 /// Loads the configuration from the given config file.

 /// </summary>

 /// <param name="confPath">path to the configuration file</param>

 /// <returns>Configuration class instance</returns>

 public static Configuration GetConfiguration(string confPath) { ... }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <param name="bStrict">boolean value indicating whether to raise

 /// exceptions if the property does not exist</param>

 /// <returns>Property value</returns>

 public string this[string propertyName, bool bStrict]

 { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the value of the given property.

 /// </summary>

 /// <param name="propertyName">name of the property to look for</param>

 /// <returns>Property value</returns>

 public string this[string propertyName] { get { ... } set { ... } }

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 17

 /// <summary>

 /// Gets the property group corresponding to the given name.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name, or

 /// null</returns>

 public PropertyGroup GetGroup(string groupName) { ... }

 /// <summary>

 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(string groupName) { ... }

 /// <summary>

 /// Adds a property group corresponding to the given name to the

 /// configuration if not already present.

 /// </summary>

 /// <param name="group">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name</returns>

 public PropertyGroup AddGroup(PropertyGroup group) { ... }

 /// <summary>

 /// Removes the group of properties corresponding to the given name from

 /// the configuration if present.

 /// </summary>

 /// <param name="groupName">name of the property group to look for</param>

 /// <returns>Property group corresponding to the given name if

 /// successfully removed, null otherwise</returns>

 public PropertyGroup RemoveGroup(string groupName) { ... }

 /// <summary>

 /// Checks whether the given instance is a configuration object and

 /// whether it contains the same information of the current instance.

 /// </summary>

 /// <param name="other">instance to compare with</param>

 /// <returns>true if the given instance is of type Configuration

 /// contains the same information of the current instance.</returns>

 public override bool Equals(object other) { ... }

 }

}

Listing 6 - Configuration class public interface.

Listing 6 reports the public interface of the Configuration class. An instance of the

Configuration can be created programmatically or by reading the application configuration

file that comes with any .NET executable application. In case we provide the configuration

parameters through the application configuration file it is possible to get the

corresponding Configuration instance simply by calling the static method

Configuration.GetConfiguration() or by using the overloaded version that allows us to

specify the path of the configuration file. These methods expect to find an XML file like

the following:

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 18

Figure 2 - Aneka Configuration File

There are few parameters which are worth to spend some more word for. These are:

SingleSubmission, ResubmitMode, and UserCredential.

SingleSubmission influences the check made by the application to verify its completion

status. When SingleSubmission is set the terminates its execution when the list of task

submitted to the grid is empty and all the tasks have been returned and terminated their

execution successfully. In case the SingleSubmission parameter is set to false,it is

responsibility of the user code to detect the termination condition of the application and

communicate it to AnekaApplication instance. In many cases there is no need to

dynamically submit the jobs, but they can be provided all at once in a single submission as

shown in Listing 7. From here the name SingleSubmission.

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 AnekaApplication<AnekaTask,TaskManager> app = Setup(args);

 // create task instances and wrap them

 // into AnekaTask instances

 double step = 0.0001;

NOTE: In this tutorial we will not discuss the use of the file transfer

support infrastructure. This feature allows to add additional files to

the entire AnekaApplication or the single WorkUnit. The system will

automatically transfer the files and retrieve the output files in a

complete transparent manner. For more information about this feature

it is possible to have a look at the documentation of the Aneka.Data

and Aneka.Data.Entity documentation.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 19

 double min = -2.0;

 double max = 2.0;

 while (min <= max)

 {

 // Step 2. create a task instance

 MyTask task = new MyTask();

 task.X = min;

 // Step 3. wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // Step 4. instead of directly submitting

 // the task we add it to the application

 // local queue.

 app.AddWorkUnit(gt);

 min += step;

 }

 // Step 5. we submit all the tasks at once

 // this method simply iterates on the local

 // queue and submit the tasks.

 app.SubmitExecution();

 }

 }

}

Listing 7 - Task creation and submission in SingleSubmission mode.

The while loop shown in Listing 7 is a possible solution for submitting tasks to Aneka: this

is a single submission scenario, which is really useful for independent bag of tasks

applications. In this case SingleSubmission can be set to true and the AnekaApplication

class can automatically detect the termination of the execution without the user

intervention.

SingleSubmission and Application Termination

SingleSubmission set to true, covers very simple scenarios in which the tasks are

submitted only at once. In this case all the task to submit are added to the

AnekaApplication instance and the AnekaApplication.SubmitExecution() method is

invoked. This pattern implies that there will be no further submissions of jobs. If

this is not the case, it is better to keep the SingleSubmission parameter set to

false. If we set the SingleSubmission to false and use method

AnekaApplication.SubmitWorkUnit(...) in conjunction with the method

AnekaApplication.SubmitExecution() there are chances that some task just simply

get lost.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 20

ResubmitMode allows users to tune the AnekaApplication behaviour. This parameters

specify which resubmission strategy to adopt when a task fail. You can specify

ResubmitMode.AUTO or ResubmitMode.MANUAL. In the first case when a task fails Aneka

will take the responsibility of resubmitting the task, in the second case it is responsibility

of the user to resubmit the task. More details will be given in Section 3.3.4.

UserCredential allows to specify the authentication credentials used by the client

application to connect to Aneka and submit tasks. This property if of type ICredential and

in order to provide a concrete instance for this property we can use the UserCredential

class that is displayed in Listing 8 and allows user to be authenticated by using providing a

simple user name and password. The class also exposes a list of groups that specify the

roles that the user can play in the system and the operations that he or she can perform.

using System;

namespace Aneka.Security

{

 /// <summary>

 /// Interface ICredential. It provides the interface

 /// for all types of credential supported by the system.

 /// </summary>

 public interface ICredential

 {

 /// <summary>

 /// Gets, sets the unique identifier

 /// for the user credential.

 /// </summary>

 object Id { get; set; }

 /// <summary>

 /// Checks whether this instance is equal to the given credential.

 /// </summary>

 /// <param name="credential">credential</param>

 /// <returns>true if equal, false otherwise</returns>

 bool AreEqual(ICredential credential);

 /// <summary>

 /// Converts the credential data to a byte array.

 /// </summary>

 /// <returns>byte array containing the serialized

 /// credential instance</returns>

 byte[] ToByte();

 /// <summary>

 /// Constructs a credential instance from a byte stream.

 /// </summary>

 /// <param name="byteData">array of byte containing the serialized

 /// data of the credential instance</param>

 /// <returns>credential instance</returns>

 ICredential FromByte(byte[] byteData);

 }

 /// <summary>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 21

 /// Class UserCredentials. Contains the information

 /// about the user by storing the username, the password,

 /// and the number of groups the user belongs to.

 /// </summary>

 [Serializable]

 public class UserCredentials : ICredential, IXmlSerializable

 {

 /// <summary>

 /// Gets, sets the user name of the user.

 /// </summary>

 public string Username { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the password for the user.

 /// </summary>

 public string Password { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the groups the user belongs to.

 /// </summary>

 public List<string> Groups { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the full name of the user.

 /// </summary>

 public string FullName { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the description of the user.

 /// </summary>

 public string Description { get { ... } set { ... } }

 /// <summary>

 /// Creates an instance of the UserCredentials type with blank user name

 /// and password.

 /// </summary>

 public UserCredentials(): this("", "", new List<string>()) { ... }

 /// <summary>

 /// Creates an instance of the UserCredentials type

 /// with given user name and password.

 /// </summary>

 /// <param name="username">user name</param>

 /// <param name="password">password</param>

 public UserCredentials(string username, string password) :

 this(username, password, new List<string>())

 { ... }

 /// <summary>

 /// Creates an instance of the UserCredentials type with given user name,

 /// password, and set of groups the user belongs to.

 /// </summary>

 /// <param name="username">user name</param>

 /// <param name="password">password</param>

 /// <param name="grps">list of groups the user belongs to</param>

 public UserCredentials(string username, string password, List<string>

 grps)

 { ... }

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 22

 /// <summary>

 /// Creates an instance of the UserCredentials type with given user name,

 /// password, and full details.

 /// </summary>

 /// <param name="username">user name</param>

 /// <param name="password">password</param>

 /// <param name="fullname">list of groups the user belongs to</param>

 /// <param name="description">list of groups the user belongs to</param>

 public UserCredentials(string username, string password, string fullname,

 string description)

 { ... }

 #region ICredential Members

 ...

 #endregion

 #region IXmlSerializable Members

 ...

 #endregion

 }

}

Listing 8 - ICredential interface, Role enumeration, and UserCredentials class.

In order to use this class we need to include the namespace Aneka.Security in the

namespace declaration. There is no need to reference additional assemblies because this

class if defined in the Aneka.dll library. The ICredential interface does not specify

anything except a property Id and methods for saving the data into a byte array and

restoring an instance from it. This gives an high degree of flexibility in implementing

authentication techniques, the specific features of each security model supported by the

system, are exposed in the classes that implement this interface, for example the

UserCredentials class.

The Configuration class basically performs the task of reading the settings concerning

Aneka in the configuration file and exposing them within the application. The

programmatic use of this class is generally limited and restricted to very simple

applications and the common scenario is to have a configuration file where the user can

put its settings.

3.3.3 Monitoring: Getting Back Results

Job submission is only a phase of grid-based application development. After submitting

jobs, we are generally interested in handling the outcomes of their executions. Another

important issue is knowing whether jobs have been executing successfully or have failed.

In other words we need to monitor the execution of the grid application.

The AnekaApplication class exposes a set of events that user can register with, and that

provide an asynchronous feedback about the application execution. These events are:

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 23

 WorkUnitFinished: this event is raised when the client application receives back

from the Aneka scheduler service a job which has terminated its execution.

 WorkUnitFailed: this event is raised when the client application receives back from

the Aneka scheduler service a job which has failed, along with some information –

if available - on the nature of the error occurred.

 WorkUnitAborted: this event is raised when the user programmatically stops the

execution of a work unit already submitted to Aneka.

 ApplicationFinished: this event is raised by the client application as soon as the

application termination condition is verified. This can be detected automatically or

with the contribution of the user.

WorkUnitFinished, WorkUnitFinished, and WorkUnitAborted are of the same type:

EventHandler<WorkUnitEventArgs<W>>. Listing 8 shows the WorkUnitEventArgs class and

the enumeration WorkUnitState.

namespace Aneka.Entity

{

 /// <summary>

 /// Class WorkUnitEventArgs. Defines the information related to change status

 /// event of a WorkUnit. It basically shows the information on the WorkUnit

 /// instance, its status, and an exception if occurred during execution.

 /// </summary>

 [Serializable]

 public class WorkUnitEventArgs : EventArgs

 {

 /// <summary>

 /// Gets the work unit instance related to the event.

 /// </summary>

 public WorkUnit WorkUnit { get { ... } }

 // constructors...

 }

 /// <summary>

 /// Enum WorkUnitState. Defines the possible states of a WorkUnit.

 /// </summary>

 public enum WorkUnitState

 {

 /// <summary>

 /// The work unit has not been started yet.

 /// </summary>

 Unstarted = 0,

 /// <summary>

 /// The work unit is running on some node of the grid.

 /// </summary>

 Running = 1,

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 24

 /// <summary>

 /// The work unit has been stopped.

 /// </summary>

 Stopped = 2,

 /// <summary>

 /// The work unit is suspended (Not used at the moment).

 /// </summary>

 Suspended = 3,

 /// <summary>

 /// The work unit has started. (Used in the Thread Model)

 /// </summary>

 Started = 4,

 /// <summary>

 /// The work unit has been queued.

 /// </summary>

 Queued = 5,

 /// <summary>

 /// The work unit failed.

 /// </summary>

 Failed = 6,

 /// <summary>

 /// The work unit has been rejected.

 /// </summary>

 Rejected = 7

 /// <summary>

 /// The work unit is waiting for input files to be moved on the server.

 /// </summary>

 StagingIn = 8,

 /// <summary>

 /// The work unit has completed its execution and it is waiting for its

 /// files to be moved on the client.

 /// </summary>

 StagingOut = 9,

 /// <summary>

 /// The instance has been aborted by the user.

 /// </summary>

 Aborted = 10,

 /// <summary>

 /// The instance has terminated its execution successfully and all its

 /// depending output files have been downloaded.

 /// </summary>

 Completed = 11,

 /// <summary>

 /// The instance was running and for some reason has been terminated by

 /// the infrastructure and rescheduled.

 /// </summary>

 ReScheduled = 12

 }

}

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 25

Listing 9 - Configuration class public interface and WorkUnitState enumeration.

The WorkUnitEventArgs class provides only one property: WorkUnit. Once we get a

reference to the WorkUnit we can query its State property to get information about the

work unit status according to the values of the enumeration WorkUnitState.

When the event WorkUnitFailed is raised the corresponding the user should expect only

the values Failed, Rejected, and Stopped. In this case it is possible to look at the

Exception property of the WorkUnit instance. This property can be helpful in discovering

the origin of the failure. There could be different causes originating this event:

The computing node on which the task was executed failed. In this case Aneka will send

back a WorkUnitFailed event by setting the Status property of the WorkUnit to Failed and

by setting the Exception property to System.Exception with “Resource Failure” as

message. This condition raises the WorkUnitFailed event if and only if the ResubmitMode

on the WorkUnit instance has been set to ResubmitMode.MANUAL.

The task execution has been rejected. This case only applies in case of using advance

reservation. Advance reservation allows clients to reserve a future time slice for executing

a work unit. This is an advanced feature and will not be discussed in this tutorial. The only

thing important to mention is that in this case the Status property of the WorkUnit

instance will be set to Rejected.

The task execution failed because of an exception in the user code. This is the most

common case. If the task fails because of an exception in the user code the Status

property is set to WorkUnitState.Failed and the Exception property will contain the

remote exception which generated the failure.

The WorkUnitAborted event is raised only in case the user actively stops the execution of

a work unit that has been already submitted. This event is useful when multiple software

components are monitoring the activity of the application. In this scenario one software

component can stop the execution of the work unit and the other one can get notified of

this action.

Handling Properly the WorkUnitFailed Event

It is always wise to perform null value checks on the WorkUnit and the

Exception property of the WorkUnit instance, in case of WorkUnitFailed

events. Since something has gone wrong on the remote computation node and

we are not sure about the cause, we cannot be sure that all the data of the

failure have been collected.

While we are always assured that the WorkUnit property of the event

argument is not null, but we cannot ensure this for its Exception property.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 26

In case of WorkUnitFinished the state property will then be set to Stopped. This is the

simplest case: we can then access the WorkUnit property - that in the case of task model

would be of type AnekaTask – to access all the data of the WorkUnit and getting back the

results.

The case of the ApplicationFinished event is simpler. As shown in Listing 10, the

ApplicationEventArgs class only contains one property that is the duration of the entire

execution of the application.

namespace Aneka.Entity

{

 /// <summary>

 /// Class ApplicationEventArgs. Event argument class providing information

 /// about the execution of a grid application.

 /// </summary>

 [Serializable]

 public class ApplicationEventArgs : EventArgs

 {

 /// <summary>

 /// Gets the duration of the execution of the grid application.

 /// </summary>

 public TimeSpan Duration { get { ... } }

 ...

 // constructors...

 }

}

Listing 10 - ApplicationEventArgs class public interface.

It is now possible to write the user code that will collect the results. Basically what we

need to do is to register handlers with these events and process the data inside the event

handlers. We are not interested in handling the WorkUnitAborted event because there is

only one component monitoring the life cycle of the application. In order to show how this

can be done we will extend the previous example (See Listing 3) by adding the code to

obtain the value of the Gaussian distribution and saving it into an array. We will also

handle the case of tasks failed. Here is the list of the steps to perform:

1. Define a static Dictionary<double,double> called samples and instantiate it at the

beginning of the Main method.

2. Define a static integer field called failed and set it to 0 at the beginning of the

Main method.

// File: MyTaskDemo.cs

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 27

using Aneka.Entity;

using Aneka.Tasks;

// adding some useful namespaces

using System;

using System.Collection.Generics;

namespace Aneka.Examples.TaskDemo

{

 class MyTaskDemo

 {

 /// <summary>

 /// failed task counter

 /// </summary>

 private static int failed;

 /// <summary>

 /// Dictionary containing sampled data.

 /// </summary>

 private static Dictionary<double,double> samples;

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 samples = new Dictionary<double,double>();

 failed = 0;

 }

 }

}

3. For each iteration of the for loop put an entry into the dictionary samples where

the key is the value of x of the current iteration, and the value is the constant

double.NaN.

// File: MyTaskDemo.cs

using Aneka.Entity;

using Aneka.Tasks;

namespace Aneka.Examples.TaskDemo

{

 while (min <= max)

 {

 // Step 2. create a task instance

 MyTask task = new MyTask();

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 28

 task.X = min;

 // Step 3. Wrap into AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // Step 4. Submit the execution

 app.ExecuteWorkUnit(gt);

 // map key to double.NaN

 samples[task.X] = double.NaN;

 min += step;

 }

}

4. Define a static handler for the WorkUnitFinished event and register it with the

event (OnWorkUnitFinished).

5. Define a static handler for the WorkUnitFailed event and register it with the event

(OnWorkUnitFailed).

6. Define a static handler for the ApplicatioFinished event and register it with the

event (OnApplicationFinished).

7. Inside the method OnWorkUnitFinished defined write the code required to unwrap

the MyTask instance from the WorkUnit property and to replace the double.NaN

value with the value of the Result property, for the corresponding value of X.

// File: MyTaskDemo.cs

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 samples = new Dictionary<double,double>();

 failed = 0;

 AnekaApplication<AnekaTask,TaskManager> app

 = Setup(args);

 // registering with the WorkUnitFinished

 // event

 app.WorkUnitFinished += new

EventHandler<WorkUnitEventArgs<AnekaTask>>

 (OnWorkUnitFinished);

 // registering with the WorkUnitFailed

 // event

 app.WorkUnitFailed += new EventHandler<WorkUnitEventArgs<AnekaTask>>

 (OnWorkUnitFailed);

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 29

 // registering with the ApplicationFinished

 // event

 app.ApplicationFinished += new EventHandler<ApplicationEventArgs>

 (OnApplicationFinished);

 }

 }

}

8. Inside the method OnWorkUnitFailed write the code to increment the failed static

field of one unit.

// File: MyTaskDemo.cs

 /// <summary>

 /// Handles the WorkUnitFailed event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnWorkUnitFailed(object sender,

 WorkUnitEventArgs<AnekaTask> args)

 {

 Threading.Interlock.Increment(failed);

 }

9. Inside the method OnApplicationFinished write the code for dumping the data of

the dictionary and the number of task failed.

// File: MyTaskDemo.cs

 /// <summary>

 /// Handles the ApplicationFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnApplicationFinished(object sender,

 ApplicationEventArgs args)

 {

 // we do not need to lock anymore

 // the samples dictionary because the

 // asynchronous events are finished then

 // there is no risk of races.

 Console.WriteLine("Results");

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 30

 foreach(KeyValuePair<double,double> sample in samples)

 {

 Console.WriteLine("{0}\t{1}",

 sample.Key,

 sample.Value);

 }

 Console.WriteLine("Tasks Failed: " + failed);

 }

Writing the code for monitoring the application has been very straightforward. The only

aspect that worth a further discussion is the synchronization management.

As previously said events are asynchronous because they are generated from the execution

stack of another process. Since we cannot make any assumption on the timing of these

events we cannot be sure they will not overlap. Indeed, it is frequent that multiple event

calls to the WorkUnitFinished are run concurrently. Since these calls operate on the same

data structure it is necessary to lock before invoking any operation on it. The same

happens for the increment of the failed field. Conversely, while executing the handlers

registered with the ApplicationFinished event, there are no concurrent calls then the

synchronization code is not required.

We can observe that the synchronization strategy presented in this sample is really trivial.

For more complex scenarios this infrastructure cannot be enough and a more sophisticated

strategy involving semaphores can be required.

3.3.4 Application Control and Task Resubmission

As we have already said, The AnekaApplication class provides methods for controlling its

the execution on Aneka. We already have seen how to submit tasks by using two different

strategies. And how these strategies affect the evaluation of the stop condition of the grid

application. But we do not have shown how the user can programmatically stop the

execution of the application. This is accomplished by the

AnekaApplication.StopExecution() method.

By calling StopExecution() the user terminates the execution of the grid application on

Aneka and aborts all the tasks still running belonging to the application. This method

represents the only way for the user ensure the termination of the AnekaApplication when

the SingleSubmission property is set to false. Setting the SingleSubmission property to

false is not really rare, indeed it is requirement when the user wants to resubmit tasks

that have failed their execution and this implies the responsibility of communicating to

the AnekaApplication instance when the application is terminated. In this case, it is

necessary to keep trace of the execution of tasks in smarter way than the one presented

in the previous section. In this section we will show how to handle task resubmission and

programmatically control the termination of the grid application by using the

StopExecution() method.

Task resubmission is simply performing by collecting the information of the task failed by

registering an handler for the WorkUnitFailed event and, after having collected all the

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 31

information about the failed task, creating a new instance of the AnekaTask class and

resubmit it by calling the AnekaApplication.ExecuteWorkUnit(...) method. This action

actually submit a new task with the same configuration of the failed one.

As pointed out in section 3.3.2, Aneka gives you the flexibility to control the task

resubmission behavior by the ResubmitMode property in the Configuration class. Listing 11

shows all the possible values of ResubmitMode enumeration.

namespace Aneka.Entity

{

 /// <summary>

 /// Enum ResubmitMode. Enumerates the strategies available for handling

 /// work unit resubmission on failure.

 /// </summary>

 public enum ResubmitMode

 {

 /// <summary>

 /// Aneka will automatically handle task resubmission.

 /// </summary>

 AUTO = 0,

 /// <summary>

 /// Aneka will not handle task resubmission on node failure and will

 /// fire the WorkUnitFailed event.

 /// </summary>

 MANUAL = 1,

 /// <summary>

 /// Inherit the value defined at configuration level.

 /// </summary>

 INHERIT = 2,

 }

}

Listing 11 - ResubmitMode enumeration.

The default configuration for any AnekaApplication instance is ResubmitMode.AUTO. As

previously said this means that Aneka will automatically handle resubmission on task

failure. It is also possible two specify the ResubmitMode.MANUAL, in this case Aneka will

not handle task resubmission and will fire the event WorkUnitFailed for each work unit

that does not complete successfully. It is important to notice that only in case

ResubmitMode is set to MANUAL the client will be notified of task failure.

NOTE: It is important to notice that the value of ResubmitMode

only influences the behavior of Aneka when a computing node

fails. A work unit that fails because of the abnormal termination

of the user task (such as an Exception originating from the work

unit user code) will always raise the WorkUnitFailed event,

without any regard to the value of ResubmitMode. In fact, there

is no point in try to resubmit the execution of the user code

without any action, because that code will probably always fail.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 32

These are the only two values allowed for the ResubmitMode property in the

Configuration class. There is, however, a third value which is ResumitMode.INHERIT. Such

option is the default one for the ResubmitMode property of WorkUnit class and tells the

work unit instance to inherit the configuration setting from the Configuration instance of

the application.

The possibility of having a general task resubmission behavior and of tuning this behavior

for the single tasks allows a great degree of flexibility in defining custom resubmission

strategies. For example it is possible to select the manual resubmission mode only for

critical tasks and let Aneka take care about all the other tasks resubmission. This strategy

can be useful when timing is an important issue and when there are dependencies among

tasks handled by the client application. In this tutorial we will only show how to handle

the manual resubmission of all the tasks.

Manual task resubmission requires the SingleSubmission set to false. Given that, when

handling task resubmission on the client side we first have to define a termination

condition for the grid application. It is, actually, our responsibility to call the

AnekaApplication.StopExecution() method to communicate to the AnekaApplication class

to stop its execution. The general rule of thumb is the following:

1. Identify a termination condition for your application.

2. Write the handler for the WorkUnitFinished event.

3. Inside the code of the handler check the termination condition and eventually call

AnekaApplication.Stop().

Things become more complicate when we have to handle task resubmission, in this case it

could possible that we have to modify some parameters which compose the termination

condition.

Now we will extend the previous example in order to handle the manual resubmission and

we will show how the problem can be easily solved when we have a fixed number of task

to execute. We will proceed by devising two strategies:

 Strategy 1: Log Only. This strategy simply logs the failure of the task makes and

updates the termination condition.

 Strategy 2: Full Care. This strategy resubmits the failed tasks until all the tasks

have completed successfully.

Since we have a fixed number of tasks we can easily trace the execution of tasks by using

two integer variables: completed and total. The first one will be incremented by one unit

at each task completion, while the second one will store the total number of task that we

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 33

expect to complete. The algorithm used to detect the application termination condition is

then really straightforward:

1. The application terminates its execution when (total == completed) holds true.

2. Before starting to tasks submission set current to 0, and total to the number of

tasks composing out application.

3. Inside the WorkUnitFinished event handler:

a. increment by one unit the value of completed;

b. check whether total is equal to completed;

c. if the two values are equal call AnekaApplication.StopExecution();

We can finally register an handler with the ApplicatioFinished event to post process all the

tasks.

Implementing Strategy 1: Log Only.

In this case, since we do not need to resubmit the tasks the number of total tasks that we

expect to complete decreases by one unit at each task failure. Then in this strategy we

have to properly handle this condition into the WorkUnitFailed event handler. The

algorithm needs to be modified by introducing a step 4 as the following:

4. Inside the WorkUnitFailed event handler:

a. decrement by one unit the value of total;

b. check whether total is equal to completed;

c. if the two values are equal call AnekaApplication.StopExecution();

d. eventually log the failure of the task (failed field).

We can observe that since we are modifying the same variables in two different event

handlers we should use a single synchronization object that is expressively added to the

application by defining a static object field synchLock and initializing it (just call new

object()) into the Main method, before submitting the tasks. Inside the two event handlers

wrap all the code into the a lock(synchLock) { ... } block. This practice instead of using

Interlock.Increment(...) and Interlock.Decrement(...) ensures that change to the counters

and the check for the termination condition are executed atomically in each event

handler.

Implementing Strategy 2: Full Care.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 34

In this case, we do not have to make any change to the general algorithm but we have to

handle the task resubmission on the client side. This can be easily done inside the

WorkUnitFailed event handler. It is just necessary to:

1. create a new instance of the AnekaTask class;

2. configure it with the UserTask property of the failed task;

3. call the AnekaApplication.ExecuteWorkUnit(...) method by passing to it the newly

created AnekaTask instance.

We just want to observe that either the WorkUnit property of the WorkUnitStatusArgs

instance or the UsertTask property of the WorkUnit instance can be null. In this case we

need to implement a local cache of all the submitted tasks in order to be able to resubmit

the tasks.

Listing 12 shows the complete application with an implementation of both the two

strategies.

// File: MyTaskDemo.cs

using System;

using System.Threading;

using System.Collections.Generic;

using Aneka.Entity;

using Aneka.Security;

using Aneka.Tasks;

namespace Aneka.Examples.TaskDemo

{

 /// <summary>

 /// Class MyTask. Simple task function wrapping

 /// the Gaussian normal distribution. It computes

 /// the value of a given point.

 /// </summary>

 [Serializable]

 public class MyTask : ITask

 {

 /// <summary>

 /// value where to calculate the Gaussian normal distribution.

 /// </summary>

 private double x;

 /// <summary>

 /// Gets, sets the value where to calculate the Gaussian normal

 /// distribution. </summary>

 public double X { get { return this.x; } set { this.x = value; } }

 /// <summary>

 /// value where to calculate the Gaussian normal distribution.

 /// </summary>

 private double result;

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 35

 /// <summary>

 /// Gets, sets the value where to calculate the Gaussian normal

 /// distribution. </summary>

 public double Result

 {

 get { return this.result; }

 set { this.result = value; }

 }

 /// <summary>

 /// Creates an instance of MyTask.

 /// </summary>

 public MyTask() {}

 #region ITask Members

 /// <summary>

 /// Evaluate the Gaussian normal distribution

 /// for the given value of x.

 /// </summary>

 public void Execute()

 {

 this.result = (1 / (Math.Sqrt(2* Math.PI))) *

 Math.Exp(- (this.x * this.x) / 2);

 }

 #endregion

 }

 /// <summary>

 /// Class MyTaskDemo. Simple Driver application that shows how to create

 /// tasks and submit them to the grid, getting back the results and handle

 /// task resubmission along with the proper synchronization.

 /// </summary>

 class MyTaskDemo

 {

 /// <summary>

 /// failed task counter

 /// </summary>

 private static int failed;

 /// <summary>

 /// completed task counter

 /// </summary>

 private static int completed;

 /// <summary>

 /// total number of tasks submitted

 /// </summary>

 private static int total;

 /// <summary>

 /// Dictionary containing sampled data

 /// </summary>

 private static Dictionary<double,double> samples;

 /// <summary>

 /// synchronization object

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 36

 /// </summary>

 private static object synchLock;

 /// <summary>

 /// sempahore used to wait for application termination

 /// </summary>

 private static AutoResetEvent semaphore;

 /// <summary>

 /// grid application instance

 /// </summary>

 private static AnekaApplication<AnekaTask,TaskManager> app;

 /// <summary>

 /// boolean flag indicating which task failure management strategy to use.

 /// If true the Log Only strategy will be applied, if false the Full Care

 /// strategy will be applied.

 /// </summary>

 private static bool bLogOnly = false;

 /// <summary>

 /// Program entry point.

 /// </summary>

 /// <param name="args">program arguments</param>

 public static void Main(string[] args)

 {

 try

 {

 Logger.Start();

 Console.WriteLine("Setting Up Aneka Application..");

 app = Setup(args);

 // create task instances and wrap them

 // into AnekaTask instances

 double step = 0.01;

 double min = -2.0;

 double max = 2.0;

 // initialize trace variables.

 total = 400; // (max – min) / step

 completed = 0;

 failed = 0;

 samples = new Dictionary<double,double>();

 // initialize synchronization data.

 synchLock = new object();

 semaphore = new AutoResetEvent(false);

 // attach events to the grid application

 AttachEvents(app);

 Console.WriteLine("Submitting {0} tasks...", total);

 while (min <= max)

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 37

 {

 // create a task instance

 MyTask task = new MyTask();

 task.X = min;

 samples.Add(task.X, double.NaN);

 // wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // submit the execution

 app.ExecuteWorkUnit(gt);

 min += step;

 }

 Console.WriteLine("Waiting for termination...");

 semaphore.WaitOne();

 Console.WriteLine("Application finished.");

 }

 catch(Exception ex)

 {

 Console.WriteLine("Unhandled exception:");

 Console.WriteLine(" Message: {0}", ex.Message);

 Console.WriteLine(" Type: {0}", ex.GetType().FullName);

 Console.WriteLine(" Source: {0}", ex.Source);

 Console.WriteLine(" StackTrace:");

 Console.WriteLine(" {0}", ex.StackTrace);

 Console.WriteLine("Application terminated unexpectedly!");

 IOUtil.DumpErrorReport(ex,"Aneka Task Demo – Error Log");

 }

 finally

 {

 Logger.Stop();

 }

 }

 #region Helper Methods

 /// <summary>

 /// AnekaApplication Setup helper method. Creates and

 /// configures the AnekaApplication instance.

 /// </summary>

 /// <param name="args">program arguments</param>

 private static AnekaApplication<AnekaTask,TaskManager> Setup(string[]

 args)

 {

 Configuration conf = Configuration.GetConfiguration();

 // ensure that SingleSubmission is set to false

 // and that ResubmitMode to MANUAL.

 conf.SingleSubmission = false;

 conf.ResubmitMode = ResubmitMode.MANUAL;

 conf.UserCredential = new UserCredential(user, pass);

 AnekaApplication<AnekaTask,TaskManager> app =

 new AnekaApplication<AnekaTask,TaskManager>("MyTaskDemo",

conf);

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 38

 // ensure that SingleSubmission is set to false

 if (args.Length == 1)

 {

 bLogOnly = (args[0] == "LogOnly" ? true : false);

 }

 return app;

 }

 /// <summary>

 /// Attaches the events to the given instance of the AnekaApplication

 /// class. </summary>

 /// <param name="app">grid application</param>

 private static void AttachEvents(AnekaApplication<AnekaTask,TaskManager>

 app)

 {

 // registering with the WorkUnitFinished event

 app.WorkUnitFinished +=

 new

EventHandler<WorkUnitEventArgs<AnekaTask>>(OnWorkUnitFinished);

 // registering with the WorkUnitFinished event

 app.WorkUnitFailed +=

 new EventHandler<WorkUnitEventArgs<AnekaTask>>(OnWorkUnitFailed);

 // registering with the ApplicationFinished event

 app.ApplicationFinished +=

 new EventHandler<ApplicationEventArgs>(OnApplicationFinished);

 }

 /// <summary>

 /// Dumps the results to the console along with some information about the

 /// task failed and the tasks used.

 /// </summary>

 private static void ShowResults()

 {

 // we do not need to lock anymore the samples dictionary because the

 // asynchronous events are finished then there is no risk of races.

 Console.WriteLine("Results");

 foreach(KeyValuePair<double,double> sample in samples)

 {

 Console.WriteLine("{0}\t{1}", sample.Key, sample.Value);

 }

 Console.WriteLine("Tasks Failed: " + failed);

 string strategy = bLogOnly ? "Log Only" : "Full Care";

 Console.WriteLine("Strategy Used: " + strategy);

 }

 #endregion

 #region Event Handler Methods

 /// <summary>

 /// Handles the WorkUnitFailed event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 39

 public static void OnWorkUnitFailed(object sender,

 WorkUnitEventArgs<AnekaTask> args)

 {

 if (bLogOnly == true)

 {

 // Log Only strategy: we have to simply record the failure and

 // decrease the number of total task by one unit.

 lock(synchLock)

 {

 total = total - 1;

 // was this the last task?

 if (total == completed)

 {

 app.StopExecution();

 }

 failed = failed + 1;

 }

 }

 else

 {

 // Full Care strategy: we have to resubmit the task. We can do

 // this only if we have enough information to resubmit it

 // otherwise we switch to the LogOnly strategy for this task.

 AnekaTask submitted = args.WorkUnit;

 if ((submitted != null) && (submitted.UserTask != null))

 {

 MyTask task = submitted.UserTask as MyTask;

 AnekaTask gt = new AnekaTask(task);

 app.ExecuteWorkUnit(gt);

 }

 else

 {

 // oops we have to use Log Only.

 lock(synchLock)

 {

 total = total - 1;

 // was this the last task?

 if (total == completed)

 {

 app.StopExecution();

 }

 failed = failed + 1;

 }

 }

 }

 }

 /// <summary>

 /// Handles the WorkUnitFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnWorkUnitFinished (object sender,

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 40

 WorkUnitEventArgs<AnekaTask> args)

 {

 // unwrap the task data

 MyTask task = args.WorkUnit.UserTask as MyTask;

 lock(synchLock)

 {

 // collect the result

 samples[task.X] = task.Result;

 // increment the counter

 completed = completed + 1;

 // was this the last?

 if (total == completed)

 {

 app.StopExecution();

 }

 }

 }

 /// <summary>

 /// Handles the ApplicationFinished event.

 /// </summary>

 /// <param name="sender">event source</param>

 /// <param name="args">event arguments</param>

 public static void OnApplicationFinished(object sender,

 ApplicationEventArgs args)

 {

 // display results

 ShowResults();

 // release the semaphore

 // in this way the main thread can terminate

 semaphore.Set();

 }

 #endregion

 }

}

Listing 12 - Task creation and submission.

We can notice that example uses an AutoReset event object to make the main application

thread wait until all the tasks have been returned by Aneka and the results have been

showed to the console. If we do not make the main thread wait the program terminates

before all the tasks get back. This is due to the fact that when then main application

thread reaches the end of its scope and terminates it sends an abort message to all

dependent threads.

In real applications this technique is really common but there could be cases in which it is

not necessary.

Finally a possible improvement of this application is the introduction of a local cache for

keeping track of the tasks more precisely.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 41

4 File Management

The Aneka application model described in Section 3.3 also allows the management of files

that might be of support for its execution or an outcome of the execution of tasks.

Specifically files can be:

 Common files required by all the tasks of the application.

 Input files for specific tasks.

 Output files of specific tasks.

As it can be noticed there is no concept of output file for the entire application.

In the following we will introduce an overall view of the Aneka File Management APIs and

modify the example discussed in this tutorial in order to support files.

4.1 Aneka File APIs

Aneka encapsulates the information about a file into the Aneka.Data.Entity.FileData class

that is defined in the Aneka.Data.dll. This class is used to represent all the different kind

of files that are managed by Aneka.

Listing 13 provides an overall view of the properties of interest for the FileData class and

the related enumeration. In the listing, only the properties that are important from an

user point of view have been reported.

namespace Aneka.Data.Entity

{

 /// <summary>

 /// Enum FileDataAttributes. Describes the different set of attributes that a

 /// a FileData instance can have. Attributes are used to convey additional

 /// information about the file.

 /// </summary>

 [Flags]

 public enum FileDataAttributes

 {

 /// <summary>

 /// No Attributes.

 /// </summary>

 None = 0,

 /// <summary>

 /// The file is located into the file system of the Aneka application and

 /// not stored in a remote FTP server.

 /// </summary>

 Local = 1,

 /// <summary>

 /// The file is transient and does not represent neither an input file nor

 /// a final output file. At the moment this attribute is not used.

 /// </summary>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 42

 Transient = 2,

 /// <summary>

 /// The file is optional. This attribute only makes sense for output files

 /// and notifies Aneka that the file might or might not be produced by a

 /// task as outcome of its execution.

 /// </summary>

 Optional = 4

 }

 /// <summary>

 /// Enum FileDataAttributes. Describes the different set of attributes that a

 /// a FileData instance can have. Attributes are used to convey additional

 /// information about the file.

 /// </summary>

 [Flags]

 public enum FileDataType

 {

 /// <summary>

 /// No type, not used.

 /// </summary>

 None = 0,

 /// <summary>

 /// The file is an input file to a specific WorkUnit.

 /// </summary>

 Input = 1,

 /// <summary>

 /// The file is an output file to a specific WorkUnit.

 /// </summary>

 Output = 2,

 /// <summary>

 /// The file is a common input file to the application and it will be

 /// available as input to all the WorkUnit.

 /// </summary>

 Shared = 4,

 /// <summary>

 /// This is just the sum of all the values of the enumeration.

 /// </summary>

 All = Input + Output + Shared

 }

 /// <summary>

 /// Class FileData. Represents a generic file in the Aneka application model.

 /// Within Aneka files are automatically moved to execution nodes and

 /// collected back to the client manager once the WorkUnit instances are

 /// completed successfully. The properties exposed by this class allow Aneka

 /// to automate file management and make it transparent to the user.

 /// </summary>

 [Serializable]

 public class FileData

 {

 /// <summary>

 /// Gets or sets the full path to the file.

 /// </summary>

 public string Path { get { ... } set { ... } }

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 43

 /// <summary>

 /// Gets or sets the path that the file will have to the remote

 /// execution node. This property is mostly of concern for Input and

 /// Output files since shared files are generally placed where Aneka.

 /// requires them

 /// </summary>

 public string VirtualPath { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the name of the file. The name is kept separate from

 /// the path because instances of FileData can be used in a cross-

 /// platform environment where the interpretation of the path differs

 /// from node to node.

 /// </summary>

 public string FileName { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets a string representing the unique identifier of the

 /// owner of the file. The owner can be a specific WorkUnit or the

 /// Application instance. In the first case the file is an Input or an

 /// Output file, in in the second case it is a Shared file.

 /// </summary>

 public string OwnerId { get { ... } set { ... } }

 /// <summary>

 /// Gets a boolean value indicating whether the file is local to the

 /// file file system of the application or located in a remote storage

 /// facility.

 /// </summary>

 public bool IsLocal { get { ... } }

 /// <summary>

 /// Gets or sets the type of the file.

 /// </summary>

 public FileDataType Type { get { ... } set { ... } }

 /// <summary>

 /// Gets or sets the collection of attributes that are attached to the

 /// FileData instance.

 /// </summary>

 public FileDataAttributes Attributes { get { ... } set { ... } }

 }

}

Listing 13 - FileDataAttributes, FileDataType, and FileData.

A file in Aneka is identified by the following combination of values: OwnerId, Type,

Path/VirtualPath. An OwnerId identifies the owner of the file, which represents the entity

(WorkUnit or Application) that requires or produces the file. In most of the cases, the user

will not be asked to provide this information that is automatically added while adding files

to the WorkUnit instances or to the collection of the shared files of the application. Of

major importance are the Type and Path/VirtualPath propeties.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 44

4.1.1 File Types

The Type property is used to express the nature of the file, which determines how Aneka

manages. Three types are used by the user:

 FileDataType.Shared: this is an input file to the entire application and its absence

prevents the execution of the application itself. Shared files are meant to be

available to all the WorkUnit instances that the application is composed of.

 FileDataType.Input: this is an input file to a specific WorkUnit and its absence

prevents that specific WorkUnit to be executed, causing its failure.

 FileDataType.Output: this is an output file of a specific WorkUnit. If the file it is

not produced as outcome of the execution of the WorkUnit and it is not marked as

optional the corresponding WorkUnit is considered failed.

Shared and Input files are automatically moved from their origin (the local file system to

the application or a remote file server) to the execution node of the WorkUnit and the

user does not need to pre-upload files. Output files are moved from the execution node

to the local file system or a remote file server once the WorkUnit has completed its

execution or aborted. In this second case Aneka will look at the expected output files and

will collect only those that have been generated.

4.1.2 Path vs VirtualPath, and FileName

The management of files is completed by the information given through the Path,

VirtualPath, and FileName properties. These three value help the framework to locate the

file during all the life-cycle of the application. At first we can distinguish two major

contexts: the execution node and the external world. In the execution context the

FileData instance is identified and located by looking at the VirtualPath property, whereas

in the external world (should this be the user local file system or a remote file server) the

Path property is used to locate the file.

The reason why there are two distinct properties is because this allows the user to change

the name of files and provides an higher degree of flexibility in managing files. Moreover,

there could be some legacy applications that produce file in a specific path and whose

behavior cannot be changed; when these applications are executed within Aneka the

framework should still be able to properly collect the files. The value of the virtual path is

automatically inferred is left unspecified by the user.

In addition, a specific property has been designed for keeping the file name. The reason

for this, is because Aneka has been designed to run on an cross-platform environment in

which the interpretation of the path information is not uniform and might lead to not

properly locating files. By keeping the name separate from the path the framework will

always be able to collect the file.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 45

4.1.3 File Attributes

Aneka allows to attach additional information to the FileData instance to simplify the

management of files and provide advanced features such as pulling and pushing files from

remote FTP servers or by means of other kind of protocols.

The Attributes property contains the collection of attributes attached to the file, which

are defined by the FileDataAttributes enumeration. Among all the available attributes

there are only two, which are of interest for the user:

 FileDataAttributes.IsLocal: this attribute is set by default when creating a FileData

instance and it identifies the corresponding file as belonging to the local file

system of the application. Local input files are pushed into the Aneka storage

facility from the client computer, while local output files are downloaded into the

client computer once the WorkUnit that produced them has completed. If a file is

not local it resides on a remote storage and Aneka will pull input files from the

remote storage, and push output files to the remote storage.

 FileDataAttributes.Optional: this attribute is mostly related to output files and

identifies files that might (or might not) be produced as outcome of the execution

of a WorkUnit. By setting this attribute, a WorkUnit is not considered failed is

some (or all) of these files are not present in the remote execution node.

Other attributes are internally used are not of interest from a user point of view.

4.2 Providing File Support for Aneka Applications.

The AnekaApplication class and the WorkUnit class provide users with facilities for

attaching files that are required by the application. This can be done either by creating

FileData instances or by simply providing the file name and the type. The use of FileData

instances is more appropriate in cases where it is necessary to differentiate the path from

the virtual path, or whether we need to map a remote file.

NOTE: In case of remote file it is important to provide the Aneka

runtime will all the information necessary to pull the files into the Aneka

Storage facility. Such information can be saved into the Aneka

configuration file under the property group “StorageBuckets”. A storage

bucket is a collection of properties in the form of name-value pairs that

are helpful to connect to a remote storage server and upload/download a

file. In the case of an FTP storage the user name and password are be

required. Each storage bucket is identified by a name that is used by the

FileData instance to map a remote file with the required credentials to

access the remote storage: the FileData.StorageBucketId property will

store the name of the corresponding storage bucket for remote files.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 46

4.2.1 Adding Shared Files

Listing 14 shows how to add shared files to the application by either providing only the file

name or a FileData instance. It is possible to specify a full path for the file, in case no

path is given the file will be searched in the current directory. It is important to notice

that in case the user decide to provide a FileData instance the value of the OwnerId and

the Type property will be overridden with the values shown in Listing 14, which are the

application unique identifier and the FileDataType.Shared type respectively.

 /// <summary>

 /// AnekaApplication Setup helper method. Creates and

 /// configures the AnekaApplication instance.

 /// </summary>

 /// <param name="args">program arguments</param>

 private static AnekaApplication<AnekaTask,TaskManager> Setup(string[]

 args)

 {

 Configuration conf = Configuration.GetConfiguration();

 // ensure that SingleSubmission is set to false

 // and that ResubmitMode to MANUAL.

 conf.SingleSubmission = false;

 conf.ResubmitMode = ResubmitMode.MANUAL;

 conf.UserCredential = new UserCredential(user, pass);

 AnekaApplication<AnekaTask,TaskManager> app =

 new AnekaApplication<AnekaTask,TaskManager>("MyTaskDemo",

conf);

 // adding a simple file by providing the name

 // the file will be looked up into the current directory

 app.AddSharedFile("settings.txt");

 // we can also do the same with a FileData instance

 FileData fileData = new FileData(app.Id, "pi.dat",

 FileDataType.Shared);

 app.AddSharedFile(fileData);

 // ensure that SingleSubmission is set to false

 if (args.Length == 1)

 {

 bLogOnly = (args[0] == "LogOnly" ? true : false);

 }

 return app;

 }

Listing 14 - Adding shared files to an Aneka application.

In this example, we have provided the application with to files: one contains some settings

parameter and the other one the value of PI. We could think about changing the current

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 47

example in order to make use of such files. For example we could use the “settings.txt”

file for loading the values of xo and so that we can customize the shape of the

standard distribution. This is the expected content of the “settings.txt” file:

x0:<real-number>

sigma:<real-number>

4.2.2 Adding Input and Output Files

Listing 15 shows how to add input and output files to the single WorkUnit instances. As

happens for the case of shared files it is also possible to provide a FileData instance.

Moreover, the WorkUnit class also exposes the InputFiles and OutputFiles collections

(IList<FileData>) where the user can directly add FileData instances.

 Console.WriteLine("Submitting tasks...");

 while (min <= max)

 {

 // create a task instance

 MyTask task = new MyTask();

 task.X = min;

 samples.Add(task.X, double.NaN);

 // we write into a file the content of X to show how we

 // can use input files.

 string input = string.Format("input_(0).dat",task.X);

 using(StreamWriter sw = File.CreateText(input))

 {

 sw.Write(task.X);

 sw.Close();

 }

 // wrap the task instance into a AnekaTask

 AnekaTask gt = new AnekaTask(task);

 // we add the input file to the AnekaTask instance

 gt.AddFile(input, FileDataType.Input,

 FileDataAttributes.Local);

 // we add an output file that will contain the result.

 string output = string.Format("output_(0).dat",task.X);

 gt.AddFile(output, FileDataType.Output,

 FileDataAttributes.Local);

 // submit the execution

 app.ExecuteWorkUnit(gt);

 min += step;

 }

 Console.WriteLine("Waiting for termination...");

Listing 15 - Adding input and output files to tasks.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 48

4.2.3 Using Files on the Remote Execution Node

The example has been modified to collect the information about the sample to calculate

from an input file and to store the result into an output file. Both shared and input files

will be located in the current execution directory of the WorkUnit instance and the

following listing shows how to modify the MyTask.Execute method in order to leverage

files for its computation.

 #region ITask Members

 /// <summary>

 /// Evaluate the Gaussian normal distribution

 /// for the given value of x.

 /// </summary>

 public void Execute()

 {

 StreamReader s1 = null;

 // reads the content of the settings.txt file in order

 // to customize the shape of the normal distribution.

 double x0 = double.NaN;

 double sigma = double.NaN;

 using(sr = File.OpenText("settings.txt"))

 {

 string content = sr.ReadLine();

 x0 = double.Parse(content.Substring(content.IndexOf(':')+1));

 content = sr.ReadLine();

 sigma =

double.Parse(content.Substring(content.IndexOf(':')+1));

 sr.Close();

 }

 // reads the value to sample from the file.

 double val = double.NaN;

 string input = string.Format("input_(0).dat",this.x);

 using(sr = File.OpenText(input))

 {

 string content = sr.ReadToEnd();

 val = double.Parse(content);

 sr.Close();

 }

 double sigma2 = sigma * sigma;

 this.result = (1 / (Math.Sqrt(2* Math.PI*sigma2))) *

 Math.Exp(- ((this.x – x0)* (this.x – x0)) /

 (2*sigma2));

 // write the result to the output file.

 string input = string.Format("output_(0).dat",this.x);

 using(StreamWriter sw = File.CreateText(file))

 {

 sw.Write(this.result);

 sw.Close();

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 49

 }

 }

 #endregion

Listing 16 - Reading and writing input and output files from a ITask instance.

As it can be noticed from the listing, there is no specific operation that has to be

performed inside the task to access the input and shared files or to write output files. In

this case we simply need to read the content of two files and write the result of the

computation into another file.

4.2.4 Collecting Local Output Files

Once the task has completed it is possible to access the content of local output file from

the file system local to the user. The value of the Path property and the configuration

settings of the Aneka application will determine the location of the output file.

If the Path property contains a rooted path, this will be location where the file will be

found. Otherwise, the file will be stored under the application working directory that is

represented by Workspace property of the Configuration class. In this directory, a

subdirectory whose name is represented by the Home property of the application instance

will be created to store all the output files. Since it might be possible that all the output

files produced by different tasks could have the same name, Aneka allows to store the

content of each WorkUnit instance in a separate directory that is named after the

WorkUnit.Name property. This value is automatically filled when the user creates an

AnekaTask instance and is in the form “Task-N” where N is a sequential number. By

default Aneka saves the output of each WorkUnit instance in a separate directory, in order

to turn off this feature it is sufficient to set the value of Configuration.ShareOuput-

Directory to false.

In the previous example, we have given a different name to each output file. Hence, there

is no need to save the results in a separate directory and we can set the value of

Configuration.ShareOutputDirectory to false.

Finally, if the value of Configuration.Workspace is not set, the default working directory is

taken as reference directory.

4.3 Observations

This section has provided an overview of the support for file management in Aneka.

Differently from other distributed computing middlewares, Aneka automates the

movement of files to and from the user local file system or remote storage servers to the

Aneka internal storage facility. The major reason behind this design decision is simplify as

much as possible the user experience and to automate those task that do not really

require the user intervention.

The basic features of file management in Aneka have been demonstrated by modifying the

discussed example in order to support shared, input and output files. The example

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 50

includes only files that belong or will be saved into the file system local to the user, while

the use of files located in remote servers has not been demonstrated. The use of this

feature requires a proper configuration of the Aneka Storage service, which goes beyond

the scope of this tutorial.

5 Aneka Task Model Samples

The examples directory in the Aneka distribution contains some ready to run applications

that show how is it possible to use the services provided by Aneka to build non-trivial

applications. The examples concerning the Task Execution Model are the following:

 Renderer

 Convolution

 TaskDemo (within the Tutorial folder)

Each application, except TaskDemo which a console application composed by only one

file, presents the same structure: there is one project (Class Library) containing the code

to parallelize the particular task to be accomplished and another project containing the

Windows Form constituting the application. Additional projects, which are generally class

library projects, can be present.

For each application the interesting part for the scope of this tutorial is contained in the

Class Library project that parallelizes the code, create Tasks, and interacts with Aneka to

submit these tasks, gets them back and provides feedback to the main application. Within

such project we always find:

 the definition of the application specific task;

 the main control loop for tasks submission and retrieval.

In the following sections we will quickly review these projects and describe their content.

5.1 Renderer

The Render application demonstrates how to parallelize a rendering task by using Aneka.

This application makes use of the POV-Ray rendering engine that need to be installed on

each computing node of the Aneka Cloud.

5.2 POV-Ray and MegaPOV

Persistence of Vision Raytracer (POV-Ray) is a software used to render three dimensional

models as images. It provides a scripting language for defining the structure of the three

dimensional model, an engine to convert such model into an image, and a Windows

application to use the engine. POV-Ray provides a lot of features and allows you to create

very complex and realistic three dimensional models. It can be freely downloaded at

http://www.povray.org.

http://www.povray.org/

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 51

In order to effectively use POV-Ray for implementing a distributed rendering system it is

necessary to be able to programmatically control the rendering process. Unfortunately

POV-Ray does not provide any library that can be directly used for this scope. It is,

however, possible to start the rendering process as a console application by using

MegaPOV which is an unofficial version of POV-Ray that allows to use the POV-Ray

rendering engine as a console program. MegaPOV can be freely downloaded at

http://megapov.inetart.net/.

By using MegaPOV we can automatize the rendering task by providing the right input

parameters to the MegaPOV executable.

5.2.1 Parallel Ray Tracing

POV-Ray can render either images or animations. Hence, it is possible to parallelize the

rendering task in many ways:

 Parallelize the task of rendering the single image.

 Parallelize the task of rendering the animation by rendering the different frames as

a parallel tasks.

 Parallelize the task of rendering the animation by composing the previous two

options.

Figure 3. Distributed POV-Ray Renderer

http://megapov.inetart.net/

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 52

The example provided with the Aneka distribution implement the first technique. This

technique is actually possible because the POV-Ray engine allows to render a portion of

the image that can be identified by a rectangle. By selectively identifying adjacent

rectangles we can transform the rendering task in a embarrassingly parallel problem. This

is the technique used in the example to perform ray tracing on Aneka. The algorithm can

be sketched as follows:

1. Define a partition of the image that will be the result of the rendering.

2. Create as many tasks as the adjacent rectangles that constitute the partition.

3. Configure each task to run the MegaPOV executable with the parameters required

to perform the rendering only of a specific rectangle of final image.

4. Submit the tasks to Aneka.

5. Wait for the results and recompose the image on the client application.

The parallelization of the rendering task is actually trivial because the MegaPOV

executable allows to perform selective rendering of a portion of the final image.

Otherwise, it would have been really difficult to do that. We can notice however, that the

ray tracing process is intrinsically an embarrassingly parallel problem, since the

information required to compute the color value of a single pixel only depends on the

model and not on the value of other pixels in the image.

5.2.2 The Example

The Renderer application is composed by two projects:

 Renderer: this project contains the Windows form that constitutes the application.

As can be seen in Figure 3 the interface allows to select a model, the dimension of

the result image, and the number of task into which parallelize the rendering

process. There different files in the project but the most important is

RendererForm.cs. This file contains the definition of the user interface and the

code to connect to Aneka and submit tasks.

 RendererLibrary: this project contains the definition of the RenderTask class that

constitute the task execute on the remote note.

This application also constitutes a good example about how to run legacy jobs on Aneka by

using the Task Execution Model. In this tutorial we will only describe the RenderTask class

and the portion of code used to create, configure, and submit the tasks to Aneka.

As show in Listing 17 the RenderTask class implements the ITask interface and provides

some useful properties for configuring the execution of the MegaPOV application on the

remote node.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 53

using System;

....

// we need to use the Process class.

using System.Diagnostics;

using Aneka.Tasks;

namespace Aneka.Examples.Renderer

{

 /// <summary>

 /// Class RenderTask. Defines the task used

 /// to perform rendering on a remote node.

 /// It uses the MegaPOV executable to perform

 /// the selective rendering of a segment of

 /// the output image.

 /// </summary>

 [Serializable]

 public class RenderTask : ITask

 {

 /// <summary>

 /// Gets, sets the starting row of

 /// the image segment to render.

 /// </summary>

 public int Row { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the starting column

 /// of the image segment to render.

 /// </summary>

 public int Col { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the base application

 /// path of the MegaPOV application.

 /// </summary>

 public string BasePath { get { ... } set { ... } }

 /// <summary>

 /// Gets, sets the string used to

 /// save the standard output of the

 /// execution of MegaPOV.

 /// </summary>

 public string Stdout { get { ... } set { ... } }

 /// <summary>

 /// Gets the string used to save

 /// the standard error of the

 /// execution of MegaPOV.

 /// </summary>

 public string Stderr { get { ... } }

 /// <summary>

 /// Gets a bitmap containing the segment of

 /// the rendered image by this task. This is

 /// the actual output of this task.

 /// </summary>

 public Bitmap RenderedImageSegment { get { ... } }

 /// <summary>

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 54

 /// Gets the internal unique identifier

 /// for this task.

 /// </summary>

 public string InternalId { get { ... } }

 /// <summary>

 /// Creates an instance of the RenderTask class

 /// configured with the given parameters.

 /// </summary>

 /// <param name="InputFile">path to the input model file.</param>

 /// <param name="ImageWidth">width of the whole rendedred image

 /// </param>

 /// <param name="ImageHeight">height of the whole rendered

 /// image</param>

 /// <param name="SegmentWidth">width of the rendered image

 /// segment</param>

 /// <param name="SegmentHeight">height of the rendered image

 /// segment</param>

 /// <param name="StartRow">initial row of the rendered segment in

 /// the image</param>

 /// <param name="EndRow">end row of the rendered segment in the

 /// image</param>

 /// <param name="StartCol">initial column of the rendered segment

 /// in the image</param>

 /// <param name="EndCol">end column of the rendered segment in

 /// the image</param>

 /// <param name="MegaPOV_Options">additional options for the

 /// MegaPOV application</param>

 public RenderTask(string InputFile,

 int ImageWidth, int ImageHeight,

 int SegmentWidth, int SegmentHeight,

 int StartRow, int EndRow,

 int StartCol, int EndCol,

 string MegaPOV_Options)

 { ... }

 #region ITask Members

 /// <summary>

 /// Executes the redndering by calling the

 /// MegaPOV application and saving the output

 /// of the rendering into the RenderedSegment

 /// property.

 /// </summary>

 public void Execute()

 { ... }

 #endregion

 }

}

Listing 17 - Public interface of the RenderTask class.

The class also provides a set of private helper methods, but the interesting part for this

tutorial resides in the Execute method. This method is responsible of setting up the

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 55

process and configuring it for running the MegaPOV application. The method execute the

cmd program and passes as parameters for this program the location of the MegaPOV

executable along with the parameters required to execute the rendering. The command

line is composed by using the parameters passed in the constructor. Listing 18 reports the

most important sequences of statements of the Execute method.

...

#region ITask Members

/// <summary>

/// Executes the redndering by calling the

/// MegaPOV application and saving the output

/// of the rendering into the RenderedSegment

/// property.

/// </summary>

public void Execute()

{

 string outfilename = null;

 string input = Environment.ExpandEnvironmentVariables(_inputFile);

 try

 {

 // create the output file name

 outfilename = string.Format("{0}_{1}_tempPOV.png", Col, Row);

 // start the MS-DOS shell

 string cmd = "cmd";

 // set up the arguments for running the

 // MegaPOV application: the /C option tells

 // the shell process to terminates after the

 // execution of the command given has completed.

 string args = "/C " +

 Path.Combine(BasePath, @"bin\megapov.exe") +

 string.Format(" +I{0} +O{1} +H{2} +W{3} +SR{4}" +

 " +ER{5} +SC{6} +EC{7} +FN16{8}",

 input, outfilename,

 _imageHeight, _imageWidth,

 _startRowPixel, _endRowPixel,

 _startColPixel, _endColPixel,

 _megaPOV_Options

);

 // setup the process for the MegaPOV application

 megapov = new Process();

 megapov.StartInfo.FileName = cmd;

 megapov.StartInfo.Arguments = args;

 megapov.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;

 // false, since we don't want WorkingDir to be used

 // to find the exe

 megapov.StartInfo.UseShellExecute = false;

 megapov.StartInfo.WorkingDirectory = WorkingDirectory;

 megapov.StartInfo.CreateNoWindow = true;

 // redirecting standard output and standard error

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 56

 megapov.StartInfo.RedirectStandardError = true;

 megapov.StartInfo.RedirectStandardOutput = true;

 // activate the events for handling the output

 // coming from the process

 megapov.EnableRaisingEvents = true;

 // attach event handlers

 // for output handling

 megapov.OutputDataReceived +=

 new DataReceivedEventHandler(megapov_OutputDataReceived);

 megapov.ErrorDataReceived +=

 new DataReceivedEventHandler(megapov_ErrorDataReceived);

 megapov.Exited += new EventHandler(megapov_Exited);

 // starts the process

 megapov.Start();

 megapov.BeginErrorReadLine();

 megapov.BeginOutputReadLine();

 while (!megapov.HasExited)

 {

 // since we are getting notified async.

 megapov.WaitForExit(1000);

 }

 if (megapov.HasExited)

 {

 // some error logging here..

 if (megapov.ExitCode != 0)

 {

 throw new Exception(error.ToString());

 }

 }

 }

 catch (Exception ex)

 {

 LogError(ex.ToString());

 throw ex;

 }

 finally

 {

 // we ensure that the process is closed ...

 CloseProocess();

 try

 {

 // ... then we try to crop the image

 // and extract the rendered portion.

 // We have to do this because MegaPOV

 // creates an output image whose dimensions

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 57

 // are those of the entire rendered image but

 // all black except the segment we commanded

 // to render.

 CropImage(Path.Combine(WorkingDirectory, outfilename));

 }

 catch (Exception ex)

 {

 LogError(ex.ToString());

 throw ex;

 }

 // copy the buffered outputs to the

 // backing output string

 ...

 }

}

Listing 18 - Public interface of the RenderTask class.

We will briefly have a look at how the client application creates and submits the tasks to

Aneka. If we refer to Figure 3 we can notice that the user interface provides a button,

whose name is render, that activates the rendering process. The handler of the Click

event for this button contains the code we are looking for.

...

private void render_Click(object sender, EventArgs e)

{

 // UI stuff

 ...

 // retrieve the file path of the model to render

 modelPath = paths[modelCombo.SelectedIndex];

 // get width and height from combo box

 imageWidth = Int32.Parse(widthCombo.SelectedItem.ToString());

 imageHeight = Int32.Parse(heightCombo.SelectedItem.ToString());

 // get cols and rows from up downs

 columns = Decimal.ToInt32(columnsUpDown.Value);

 rows = Decimal.ToInt32(rowsUpDown.Value);

 // compute the dimensions of each segment

 segmentWidth = imageWidth/columns;

 segmentHeight = imageHeight/rows;

 int x = 0;

 int y = 0;

 // here some logging and application configuration

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 58

 // initialize the grid application

 AnekaApplication =

 new AnekaApplication<AnekaTask, TaskManager>("PovRay", configuration);

 // attaching the events to the application instance

 // updating UI

 // clear out tasks collections

 allTasks.Clear();

 doneTasks.Clear();

 failedTasks.Clear();

 for(int col=0; col<columns; col++)

 for(int row=0; row<rows; row++)

 {

 // computing the coordinates

 // of the segment

 x = col*segmentWidth;

 y = row*segmentHeight;

 int startRowPixel = y + 1;

 int endRowPixel = y + segmentHeight;

 int startColPixel = x + 1;

 int endColPixel = x + segmentWidth;

 // creating the task instance

 RenderTask rtk = new RenderTask(modelPath,

 imageWidth, imageHeight,

 segmentWidth, segmentHeight,

 startRowPixel, endRowPixel,

 startColPixel, endColPixel,

 "");

 // configure the task instance

 // by setting the base application

 // path of MegaPOV on the remote node

 rtk.BasePath = this.basepath;

 rtk.Col = col+1;

 rtk.Row = row+1;

 // saves the grid task instance in the

 // local cache.

 allThreads[rtk.InternalId] = rth;

 // add the render task to the application

 AnekaApplication.AddWorkUnit(new AnekaTask(rtk));

 }

 // submit the application

 AnekaApplication.SubmitExecution();

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 59

 // UI stuff

 ...

}

Listing 19 - Public interface of the RenderTask class.

Listing 19 shows an excerpt from the render_Click method body which illustrates how to

create the tasks.

5.2.3 Conclusions

The Renderer application shows how to use the Task Execution Model on Aneka for

developing non trivial parallel applications. This examples also demonstrates how it is

possible to use the Task Execution Model to run processes on the computing nodes. This is

accomplished by the Process class. The code shown also demonstrates how to properly

configure the Process instance to grab its output and setting the working directory.

5.3 Convolution

Convolution is an imaging application that performs image filtering by taking advantage of

the computing power provided by Aneka. More precisely, Convolution allows users to run

any kind of convolution filter in a distributed manner by creating multiple filtering tasks

which operate on different rectangular portion of the image. The application also allows

users to run the filters locally either sequentially or in parallel by recording the timing

statistics. Users can define their custom convolution filters or run predefined filters.

Figure 4. Convolution Application.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 60

The application is composed by different projects:

 ConvolutionDemo: is Windows Form project containing the GUI of the application

and the configuration classes.

 ConvolutionFilter: is a Class Library project containing the wrapper classes that

allow running any convolution filter on Aneka.

 Imaging: is a Class Library project containing the definition of the object model

used to define and implement filter along with some helper classes.

 PictureBox: is a Control Library project containing the PictureBox control used in

the application to show the original image and the result of the filtering process.

The relevant code for this tutorial resides in the ConfvolutionFilter library which is the

one containing the AnekaConvolutionFilter class, responsible of parallelizing the execution

of the filter.

Before looking at the code of this class it is important to give some information about

image filtering and convolution filtering.

5.3.1 Convolution Filters and Parallel Execution

A filter is an operation which can be applied to one or more images and produces as a

result one or more images. In our case we concentrate our attention on image-to-image

filters which have only one single image as input and return one single image as result.

Moreover filters can be divided in two classes:

 linear filters;

 non linear filters;

Linear filters can be expressed by a simple bi-dimensional matrix, while non linear filters

require more complex expressions. Many of the imaging operation that we are used to

apply can be expressed by using linear filters and – more important – many of these

require just some local information to compute the value of each pixel. These filters can

be easily parallelized. Filtering in this case becomes a embarrassingly parallel problem.

Convolution filters are linear filters which generally require a limited information local to

the pixel in order to determinate its value. They are generally expressed as a linear

combination of a rectangular region of pixels centered in the pixel of interest. These

coefficients can be expressed into a bi-dimensional matrix that mimics the rectangular

region of the pixels and that is normally called kernel.

Given this, it is then trivial provide a distributed implementation of a convolution filter. A

simple that can be used is the following:

1. Define the dimension and the coefficients of the convolution kernel.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 61

2. Divide the image to be filtered into a sequence of adjacent rectangles which

overlap on each side by half of the kernel corresponding dimension.

3. For those rectangles which are on the edges of the image provide a a border that

allows the computation of the pixel values on the image borders.

4. Create as many tasks as the rectangles originating from the partition.

5. Configure each task with one different rectangle and convolution filter to apply.

6. Submit the tasks to Aneka.

7. Wait for the results and recompose the image.

This is basically the algorithm implemented in the Convolution Application. The only

difference from the algorithm sketched above is in the recomposition strategy adopted,

since the application does not wait for all the tasks to compose the result but does it

incrementally as soon as the tasks arrive. The application also manages task resubmission.

In this tutorial we will only have a brief look at the code used to parallelize the execution

of the filter without digging into the details of the synchronization and the properties of

the filter.

5.3.2 AnekaConvolutionFilter

As already said the ConvolutionFilter project contains the classes which deal with Aneka

and allow filter parallelization. In particular the following classes are relevant:

 AnekaConvolutionFilter: it inherits the RBConvolutionFilter class which provides

already the facilities for splitting the images into overlapping rectangles and fire

events when the filtering operation on one rectangles has completed.

 Worker: this class implements the ITask interface and IMatrixFilter and wraps the

execution of the filter on a remote node.

This architecture allows a really tiny implementation of the distributed filtering because it

consists on writing actually few methods for starting the grid application and for handling

the events.

using System;

....

// we need some imaging operations

// for handling the slices

using System.Drawing;

using System.Drawing.Imaging;

// we will use semaphores for

// synchronizing the execution

using System.Threading;

// aneka libraries

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 62

using Aneka.Tasks;

using Aneka;

using Aneka.Entity;

using Aneka.Security;

namespace Fl0yd.Tools.Imaging.Filters

{

 /// <summary>

 /// Class AnekaConvolutionFilter. Performs the convolution

 /// by creating tasks for the grid.

 /// </summary>

 public class AnekaConvolutionFilter : RBConvolutionFilter

 {

 /// <summary>

 /// Creates an AnekaConvolutionFilter instance, with the given

 /// kernel and the connection data to the grid computing

 /// infrastructure.

 /// </summary>

 /// <param name="host">Task scheduler host address</param>

 /// <param name="port">Task scheduler service port number</param>

 /// <param name="user">Task scheduler user name</param>

 /// <param name="password">Task scheduler password</param>

 /// <param name="kernel">kernel matrix</param>

 /// <param name="slice">slice dimension</param>

 public AnekaConvolutionFilter(string host, int port,

 string user, string password,

 int[,] kernel, Size slice) :

 base(slice)

 { ... }

 /// <summary>

 /// Executes the convolution of the slices by submitting these

 /// tasks as grid threads to the grid.

 /// </summary>

 /// <param name="slices">array of slices</param>

 /// <returns>filtered slices</returns>

 protected override Bitmap[] DoSlicesConvolution(Bitmap[] slices)

 {

 try

 {

 // prepare the array of results.

 this.results = new Bitmap[slices.Length];

 // here comes the aneka configuration

 // create a new grid application for image filtering

 this.app = new AnekaApplication<AnekaTask, TaskManager>

 ("ImageConvolution", config);

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 63

 int sdx = 0;

 foreach(Bitmap slice in slices)

 {

 // logging here...

 // Create the Task instance for remote

 // execution and configure it with the

 // filter parameters

 Worker worker =

 new Worker(sdx, slice,

 this.kernel.Clone() as int[,]);

 worker.Norm = this.norm;

 worker.Offset = this.offset;

 // create a grid task wrapping a single

 // convolution task and add it to the list

 // work units to execute

 AnekaTask eachTask = new AnekaTask(worker);

 app.AddWorkUnit(eachTask);

 // increment the slice counter

 sdx++;

 }

 this.workersLeft = slices.Length;

 // sets up event handler

 // submit the application

 this.app.SubmitExecution();

 // wait for termination

 this.finishEvent.WaitOne();

 }

 catch (Exception ex)

 {

 logger.Warn("Error trying to launch tasks", ex);

 throw ex;

 }

 // collect thread information...

 return this.results;

 }

 /// <summary>

 /// Stops filter execution.

 /// </summary>

 public override void Stop() { ... }

 }

}

Listing 20 - Excerpts from the AnekaConvolutionFilter class.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 64

Listing 20 shows the content of the DoSlicesConvolution the template method in the

AnekaFilter class. Here is where the connection to Aneka, the creation of tasks, their

configuration and submission take place. The synchronization technique used in this

sample is the same shown in Section 3 with an AutoReset event instance that is signalled

when all the tasks have completed successfully their execution. As we can notice the code

for parallelizing the filter is really simple: we simply iterate on the array of slices and for

each slice create a filtering task. Once we have added all the tasks to the application we

submit it. The event handlers will do the rest.

// namespace imports

...

namespace Fl0yd.Tools.Imaging.Filters

{

 /// <summary>

 /// Class Worker. Implements the ITask interface

 /// and the Execute method in order to perform

 /// image convolution.

 /// </summary>

 [Serializable]

 public class Worker : ITask, IMatrixFilter

 {

 // IMatrixFilter properties and backing fields

 // Bitmap Source

 // Bitmap Result

 // int[,] Kernel

 // int Norm

 // int Offset

 // DateTime StartTime

 // TimeSpan ElapsedTime

 // constructors & serialization

 #region ITask Members

 /// <summary>

 /// Starts the execution of the workUnit.

 /// </summary>

 public void Execute()

 {

 // retrieve a filter factory

 // which suites the pixel format

 // of the image

 ConvToolsFactory factory =

 ConvToolsFactory.CreateFactory

 (this.source.PixelFormat);

 // create a filter which operate on

 // image slices and not the whole image

 IConvolutionFilter filter =

 factory.CreateSliceFilter

 (this.kernel, this.norm, this.offset);

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 65

 // wrap the filter into a worker class

 // to execute it.

 RBConvolutionWorker worker =

 new RBConvolutionWorker(filter, this.sliceId);

 worker.Source = this.source;

 worker.Execute();

 this.startTime = worker.StartTime;

 this.elapsedTime = worker.ElapsedTime;

 this.result = worker.Result as Bitmap;

 }

 #endregion

 #region IFilter Members

 /// <summary>

 /// Filters the given image and returns

 /// the filtered imaged as a new image.

 /// </summary>

 /// <remarks>Calls the Execute method</remarks>

 /// <param name="source">source image</param>

 /// <returns>filtered image</returns>

 public Image Filter(Image source)

 { ... }

 /// <summary>

 /// Filters an image and saves it to

 /// the given destination.

 /// </summary>

 /// <param name="srcImagePath">source image path</param>

 /// <param name="destImagePath">filtered image save path</param>

 public void Filter(string srcImagePath, string destImagePath)

 { ... }

 #endregion

 }

}

Listing 21 - Excerpts from the Worker class.

Listing 21 shows the relevant code of the Work class which represents the image filtering

task. The filtering operation is contained in the Execute method that is the one called on

the remote node to carry out the execution. The two Filter methods simply call the

Execute method. Inside this method.

5.3.3 Conclusion

In this section we only have discussed the issues concerning the parallelization of a

convolution filter and how to implement it using the Task Execution Model. The whole

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 66

application is more complex and goes beyond the scope of this tutorial. It concerns also

user interface management in a multi-threaded environment.

5.4 TaskDemo

This project contains the code used to describe the Task Execution Model in this tutorial.

The project comprises only one file called MyTaskDemo.cs. In this file you can find the

definition of two classes:

 Aneka.Examples.TaskDemo.MyTask: application specific task class. It computes the

value of the Gaussian Normal Distribution for a given value of X.

 Aneka.Examples.TaskDemo.MyTaskDemo: driver application.

The application simply submits 400 tasks to Aneka and waits for the results. It also shows

how to handle task resubmission on client side, as described in the tutorial.

6 Conclusions

In this tutorial we have introduced the Task Execution Model implemented in Aneka for

running a set of independent tasks. Within the Task Execution Model a task is specific work

unit that can be executed on a remote node. The Task Execution Model is the simplest and

intuitive execution model in Aneka. It is suitable to execute jobs of legacy code or

managed .NET code.

In order to define a specific task we need to create a type implementing the ITask

interface. This interface exposes only one method that is Execute which is the method

called on the remote node to carry out the execution of the task. In order to be able to

submit tasks to Aneka, the type defined need to be serializable, and all the information it

needs for its execution has to be bundled with it (and eventually be serializable as well).

Aneka will take care of unpacking the grid on the remote node, executing it, repack it,

and send it back to the client.

This tutorial has covered the following arguments:

 General notions about the Task Model.

 How to define a class that implements the ITask interface.

 How to create and configure the AnekaTask instance with a user defined task.

 How to create an AnekaApplication instance and configure it with Task Model.

 How to submit tasks for execution.

 How to monitor the life cycle of a Task Model application.

 How to handle task resubmission.

Aneka 3.0 Developing Task Model Applications

Copyright © 2010 Manjrasoft Pty Ltd. 67

 How to manage shared, input, and output files.

All these features have been demonstrated by developing the TaskDemo application from

scratch.

This tutorial does not fully cover what can be done with the Task Model. For a more

detailed information about the advanced features exposed by Aneka the user can have a

look at the APIs documentation.

