

1

Parallel Programming with Aneka’s
Thread Programming Model

This tutorial will guide you through the process of writing parallel programs using Aneka’s Thread

Programming Model. It introduces fundamental concepts in Aneka’s Thread Programming Model

and illustrates the steps required to design and develop parallel applications with Aneka. Three

simple and interesting examples of increasing complexity are presented in order to demonstrate the

ease of using Aneka’s object-oriented approach to writing parallel applications using distributed

threads.

Objectives
At the end of this tutorial you should be able to:

• understand Aneka’s Thread Programming Model

• understand the tradeoffs between local and distributed threads

• design parallel applications by decomposing the problem

• write parallel applications using Aneka’s Thread Programming Model

1 Introduction
Traditional thread programming has always been carried out within the realm of a single process.

That is a process, composed of multiple threads of execution, share memory and other resources but

execute within the confines of the process’s memory space. The operating system allocates a

fraction of the timeslice assigned to the entire process, to each of the threads within. This process,

known as context switching, creates the illusion of running multiple threads concurrently. In modern

machines however, where multi-core processors are not uncommon, true parallelism is achieved by

assigning each thread to a single core. A multi-threaded program brings numerous advantages such

as improved responsiveness in interactive applications, increased throughput in I/O intensive

applications, increased server responsiveness when handling multiple clients, and a simplified

program structure. Threads within a single process however cannot communicate with threads in

other processes by sharing memory, and must resort to using other forms of inter-process

communication, such as named pipes and sockets.

As applications become increasingly complex there is greater demand for computational power

than can be delivered by a single multi-core machine. Often this requires utilizing an entire cluster

of, possibly multi-core, machines. Such problems typically require a large number of repetitive

calculations on different data sets. As a result, the problem can be broken down into smaller

manageable units of work and then distributed across each of the nodes in the cluster. As with

traditional threads, concurrent execution is thus achieved by executing each of these units of work

simultaneously, but on different machines. Once the partial results have been computed by the

different nodes, the results can be gathered at the client machine and combined to produce the final

result. A simple relationship can be established between the total time taken to complete the

application, and the number of nodes available for execution. The larger the number of nodes

available, the greater is the number of work units that can be distributed and executed

2

simultaneously and thus shorter is the time taken to complete the application.

Aneka takes traditional thread programming a step further. It lets you write multi-threaded

applications in the traditional way, with the added twist that each of these threads can now be

executed outside the parent process and on a separate machine. In the strict sense of the word, these

“threads” are independent processes executing on different nodes, and do not share memory or other

resources. But AnekaThreads, as they are called, lets you write applications using the same thread

constructs for concurrency and synchronization as with traditional threads. This lets you easily port

existing multi-threaded compute intensive applications to parallel versions that can run faster by

utilizing multiple machines simultaneously. The rest of this tutorial will explore Aneka’s Thread

Programming Model.

1.1 The Aneka Environment

Aneka is both a development and a runtime environment. As a development environment, Aneka

provides a set of libraries that allow you to write parallel applications using one of the three

programming models supported. These are the Task, Thread and MapReduce models. As a runtime

environment, Aneka executes the units of work that constitute your application, in parallel. This

tutorial assumes that you have a basic understanding of the Aneka runtime environment, and the role

of the scheduler and execution nodes. You are encouraged to look at the online documentation for

more details.

Note that running applications on Aneka requires access to a runtime environment pre-installed

on a cluster. For development purposes however, you may run Aneka standalone on your personal

computer.

2 Defining AnekaThreads
A running program consists of one or more threads executing within a process. A process is an

instance of a program in execution. Each process has its own memory address space, the executable

program and data. A program with a single thread is called a single-threaded program, while a

program with multiple threads is called a multithreaded program. Each thread within a program has

its own stack for maintaining its state. A process is therefore a grouping of resources, while a thread

is an entity that can be scheduled for execution on the CPU. Threads are also known as light-weight

processes. In .Net a thread is represented by the Thread class.

Figure 1: A process containing multiple threads

Three threads

in execution

Process

3

An AnekaThread is a unit of work that can be executed on a remote computer. Unlike standard

threads, each AnekaThread is executed within a process of its own on the remote machine. An

AnekaThread has a similar interface to the standard Thread class, and can be started and stopped

(aborted) in much the same manner. AnekaThreads are however more simplistic and do not support

all behaviors exposed by the .Net Thread class, such as managing thread priorities and operations

such as Suspend and Resume. Figures 1 and 2 below show the essential differences between

traditional threads and AnekaThreads.

3 Comparing Distributed Threads with Local Threads
An important difference between local and distributed threads lies in the sharing of resources. Local

threads execute within the domain of a single process and communicate by sharing memory and

other resources. For instance two local threads can read and write to the same data structure, and

may coordinate their work using synchronization primitives such as locking and signaling. On the

contrary, each distributed thread executes in isolation within a process of its own. AnekaThreads

therefore cannot communicate with each other through shared data structures, even if they were all

created by the same process. This restriction limits the use of distributed threads to applications

where such communication and coordination is not required. Table 1 below highlights the

commonalities and differences between local threads and AnekaThreads

Figure 2: A process executing AnekaThreads on remote machines

.Net Threading API Aneka Threading API

System.Threading Aneka.Threading

Thread AnekaThread

Remote Machine Remote Machine Remote Machine

AnekaThreads

Process executing

on remote

machine

Client application

Process

4

Thread.ManagedThreadId (int) AnekaThread.Id

Thread.Name AnekaThread.Name

Thread.ThreadState (ThreadState) AnekaThread.State

Thread.IsAlive AnekaThread.IsAlive

Thread.IsRunning AnekaThread.IsRunning

Thread.IsBackground [Not provided]

Thread.Priority [Not provided]

Thread.IsThreadPoolThread [Not provided]

Thread.Start AnekaThread.Start

Thread.Abort AnekaThread.Abort

Thread.Sleep [Not provided]

Thread.Interrupt [Not provided]

Thread.Suspend [Not provided]

Thread.Resume [Not provided]

Thread.Join AnekaThread.Join

Table 1: Standard .Net Threads in comparison with AnekaThreads

3.1 Thread Synchronization

Learning to appreciate the differences between local and distributed threads will help you write

more complex applications that utilize threads of both types. The .Net framework provides a number

of synchronization primitives for controlling the interactions between local threads and avoiding

race conditions, such as locking and signaling. The Aneka threading library on the other hand only

supports a single synchronization mechanism using the AnekaThread.Join method as illustrated in

figure 3 below.

Invoking AnekaThread’s join method will cause the main application thread to block until the

AnekaThread terminates by either completing successfully or failing. This basic level of

synchronization can be useful in applications where the partial results of computations are required

in order to proceed further. Since each of these threads execute in isolation completely independent

of each other, and using with their own private data structures, no other forms of synchronization

such as locking and signaling are necessary.

As the Aneka runtime environment is shared amongst a number of users, where multiple

applications utilize the execution nodes, it is not possible to perform operations such as Suspend,

Resume, Interupt and Sleep that may result in holding a resource indefinitely preventing from being

used.

5

Figure 3: Basic synchronization provided by Aneka’s threading library

3.2 Thread Priorities

.Net’s Thread class supports thread priorities, where the scheduling priority can be one of Highest,

AboveNormal, Normal, BelowNormal or Lowest. Operating systems are however not required to

honor the priority of a thread. The current version of Aneka does not support thread priorities for

AnekaThreads.

3.3 Thread Life-Cycle

The following diagram depicts the possible execution states for local threads supported by the .Net

framework. A thread may, at any given time, be in one or more of these states. When a new thread is

created its state is Unstarted, and transitions to Running when the Start method is invoked. There is

also an additional state called Background which indicates whether a thread is running in the

background or the foreground.

Figure 5 illustrates the life-cycle of an AnekaThread. As both thread types are fundamentally

different, one being local and the other distributed, the possible states they take differ from

instantiation to termination. An instance of AnekaThread transitions from Unstarted to Started when

its Start method is invoked. It then transitions to Queued when it is scheduled for execution at a

remote computing node. When execution begins, it state is Running, and finally transitions to

Completed when all work is done. During any one of these stages, an AnekaThread may fail

resulting in the Failed state. Other states such as StagingIn and StagingOut are used when a thread

requires files for execution, and produces files as output. Programming threads that require or

produce files is beyond the scope of this tutorial and you are encouraged to refer the online

documentation for more details. Lastly, from your perspective as a programmer you only get to

initiate the first state change from Unstarted to Started. Thereafter, all stage changes are carried out

by the Aneka runtime environment.

Application thread

AnekaThreads

executing on remote

node

join

join

Application thread

blocks until

AnekaThread

completes

start

start

6

Figure 4: The life cycle of local threads in .Net

Figure 5: The life cycle of AnekaThreads

Start

Interrupt

Suspend

Resume

Unstarted

Running

WaitSleepJoin

SuspendRequested

Suspended

AbortRequested

Stopped

Abort

Wait/Sleep/Join

Unstarted

Started

Aborted

StagingIn

Running

Rejected

Failed

StagingOut Completed

Queued

Start

7

4 Developing Parallel Applications with AnekaThreads
Developing parallel applications requires an understanding the problem and its logical structure.

Once you have figured this out, it is fairly easy to approach the solution. The following sections

provide simple guidelines to follow when developing parallel applications with Aneka.

4.1 Problem Decomposition

One of the key challenges in developing parallel applications lies in breaking down a large problem

into smaller units of work, such that they can be executed concurrently on different machines.

Decomposing a problem might not seem very evident at first, but it is often a good idea to start with

a piece of paper. Two common approaches used for problem decomposition are:

• Identifying patterns of repetitive, but independent computations

• Identifying distinct, but independent computations

The first approach is the most common and involves identifying repetitive calculations in the

problem. Often these take the form of for or while loops in a sequential program. Every iteration of

the loop is thus potentially a unit of work that can be computed independently from other iterations.

The two examples, calculating Pi and matrix multiplication, shown later in this tutorial uses this

approach. If an iteration is dependent on the values produced in the previous iteration, then the units

of work can no longer be computed independently and some form of communication is required.

The following diagram illustrates this:

Figure 6: Exploiting repetitive calculations to break down a large

problem in smaller units of work

The second approach involves identifying sufficiently large but isolated computations in the

problem. Each of these distinct computations would then form a unit of work for concurrent

execution. Unlike the first approach where each unit of work does the same amount of computation

and would thus take more or less the same time to complete, the second approach involves distinct

units of work, each of which make take significantly different amounts of time to complete. The first

example program shown later in this tutorial, where the results of three trigonometric functions are

Problem Independent units of work Result

8

computed, uses this approach.

Figure 7: Each isolation computation can form a unit of work

4.2 Class Design and Serialization

Once you have decomposed the problem into smaller units of work, your next step is to design your

classes. Ideally one your class should encapsulate the data and methods required to perform the

computation on the remote node. This class must be annotated with the Serializable attribute to

enable instances to be serialized and shipped to the Aneka runtime for execution.

Figure 8: A sample class that encapsulates the work done by an AnekaThread

[Serializable]

public class Work

{

 private int data1;

 private string data2;

 private int result;

 public int Result

 {

 get { return this.result; }

 }

 public Work(int data1, string data2)

 {

 this.data1 = data1;

 this.data2 = data2;

 }

 public void Compute()

 {

 // perform computation

 // and store result in

 // variable ‘result’

 }
}

Problem Independent units of work

Result

9

The method that performs the actual computation (Compute in the above example) must be

assignable to a ThreadStart delegate. This method will be invoked by the Aneka runtime on the

execution node. The results of the computation can be stored in an internal variable or data structure

and can be obtained from the instance after it has been serialized and shipped back to the client.

Figure 9: The constructor for AnekaThread takes a ThreadStart

delegate as one of its parameters

Figure 9 above presents the constructor for AnekaThread, which takes a ThreadStart delegate and an

instance of AnekaApplication as parameters. The delegate is a pointer to an instance method that

will be executed on the remote node, and the AnekaApplication instance contains the required

configuration to forward AnekaThreads to the Aneka runtime environment. Figure 11 illustrates the

process of creating and starting an AnekaThread.

Figure 10: Creating and configuring an AnekaApplication instance

Figure 11: Creating and starting an AnekaThread

public AnekaThread(ThreadStart start, AnekaApplication<AnekaThread,
 ThreadManager> application)

AnekaApplication<AnekaThread, ThreadManager> application = new

 AnekaApplication<AnekaThread, ThreadManager>(configuration);

Configuration configuration = new Configuration();
configuration.SchedulerUri = schedulerUri;

Work work = new Work(10, “hello world”);

AnekaThread thread = new AnekaThread(work.Compute, application);
thread.start();

10

5 A Parallel Math Program using AnekaThreads
The following program demonstrates the use of AnekaThreads to perform a simple mathematical

computation. While the result might not be of any practical use, this program serves as a useful

example to introduce programming with AnekaThreads. Consider the following mathematical

equation:

p = sin (x) + cost (y) + tan (z)

As these trigonometric functions are independent operations, they can be executed in isolation.

The only requirement is that after computation, the results of these operations much be combined to

produce the final result, as illustrated in the figure below.

Figure 12: The flow control in an application using multiple distributed threads

The class MathExample is a single threaded client application that runs on the local machine. It

spawns three AnekaThreads, each to compute the sin, cos and tan of a given angle. Each of these

threads is then dispatched to remote compute nodes for concurrent execution, by invoking the start

operation on the threads. Although MathExample can now continue execution, it needs to wait until

all three threads have completed before it can combine their results. To do this, it invokes the join

operation on each of the threads which causes MathExample to block until the threads have

completed their operation on the remote node. The code listing below presents the complete

solution.

MathExample

MathExample

Cosine

Tangent

Sine Sine

Start Start Start

Join
Join

Join

Remote threads

11

Program 1

 /// <summary>

 /// Class Sine. Computes the sin value of an angle.

 /// </summary>

 [Serializable]

 public class Sine

 {

 /// <summary>

 /// The angle in degrees

 /// </summary>

 private double angle;

 /// <summary>

 /// The sin value of the angle

 /// </summary>

 private double result;

 /// <summary>

 /// Gets or sets the sin value of the angle

 /// </summary>

 public double Result

 {

 get { return result; }

 set { result = value; }

 }

 /// <summary>

 /// Creates and instance of the Sine class

 /// </summary>

 /// <param name="angle">The angle in degrees to convert</param>

 public Sine(double angle)

 {

 this.angle = angle;

 }

 /// <summary>

 /// Computes the sin value of the specified angle

 /// </summary>

 public void Sin()

 {

 this.result = System.Math.Sin(Util.DegreeToRadian(this.angle));

 }

 }

 /// <summary>

 /// Class Cosine. Computes the cos value of an angle.

 /// </summary>

 [Serializable]

 public class Cosine

 {

 /// <summary>

 /// The angle in degrees

 /// </summary>

 private double angle;

12

 /// <summary>

 /// The cos value of the angle

 /// </summary>

 private double result;

 /// <summary>

 /// Gets or sets the cos value of the angle

 /// </summary>

 public double Result

 {

 get { return result; }

 set { result = value; }

 }

 /// <summary>

 /// Creates and instance of Cosine class

 /// </summary>

 /// <param name="angle">The angle in degrees to convert</param>

 public Cosine(double angle)

 {

 this.angle = angle;

 }

 /// <summary>

 /// Computes the cos value of the specified angle

 /// </summary>

 public void Cos()

 {

 this.result = System.Math.Cos(Util.DegreeToRadian(this.angle));

 }

 }

 /// <summary>

 /// Class Tangent. Computes the tan of an angle.

 /// </summary>

 [Serializable]

 public class Tangent

 {

 /// <summary>

 /// The angle in degrees

 /// </summary>

 private double angle;

 /// <summary>

 /// The tan value of the angle

 /// </summary>

 private double result;

 /// <summary>

 /// Gets or sets the tan value of the angle

 /// </summary>

 public double Result

 {

 get { return result; }

 set { result = value; }

 }

13

 /// <summary>

 /// Creates and instance of the Tangent class

 /// </summary>

 /// <param name="angle">The angle in degrees to convert</param>

 public Tangent(double angle)

 {

 this.angle = angle;

 }

 /// <summary>

 /// Computes the tan value of the specified angle

 /// </summary>

 public void Tan()

 {

 this.result = System.Math.Tan(Util.DegreeToRadian(this.angle));

 }

 }

 /// <summary>

 /// Class Util. A class for utility functions.

 /// </summary>

 public class Util

 {

 /// <summary>

 /// Converts the angle in degrees to radians

 /// </summary>

 /// <param name="angle">The angle in degrees</param>

 /// <returns>The angle in radians</returns>

 public static double DegreeToRadian(double angle)

 {

 return System.Math.PI * angle / 180.0;

 }

 }

 /// <summary>

 /// Class MathExample. Performs simple trigonometric calculations

 /// on remote nodes using AnekaThreads

 /// </summary>

 public class MathExample

 {

 /// <summary>

 /// The main entry point to the application

 /// </summary>

 /// <param name="args">Currently requires no arguments</param>

 static void Main(string[] args)

 {

 // configuration for using runtime environment

 Configuration configuration = new Configuration();

 configuration.SchedulerUri = new

Uri("tcp://400w-ICT0217-09:9090/Aneka");

14

// create AnekaApplication and remote threads

AnekaApplication<AnekaThread, ThreadManager> application = new

 AnekaApplication<AnekaThread, ThreadManager>(configuration);

 Sine sine = new Sine(10);

 AnekaThread sinThread = new AnekaThread(sine.Sin, application);

 Cosine cosine = new Cosine(10);

 AnekaThread cosThread = new AnekaThread(cosine.Cos, application);

 Tangent tangent = new Tangent(10);

 AnekaThread tanThread = new AnekaThread(tangent.Tan, application);

 try

 {

 // start executing all threads

 sinThread.Start();

 cosThread.Start();

 tanThread.Start();

 // wait until all threads complete

 sinThread.Join();

 cosThread.Join();

 tanThread.Join();

 // retrieve value for sin, cos and tan

 sine = (Sine)sinThread.Target;

 cosine = (Cosine)cosThread.Target;

 tangent = (Tangent)tanThread.Target;

 }

 finally

 {

 // stop application

 application.StopExecution();

 }

 // compute sum

 double sum = sine.Result + cosine.Result + tangent.Result;

 // display result

 Console.WriteLine("Sum = " + sum);

 }

 }

Note that as with the standard .Net Thread class, the constructor of the AnekaThread class

requires a ThreadStart delegate. That is, a pointer to a method that will be executed on the remote

node. As discussed, the class to which this method belongs must be serializable. Instances of the

class, containing all required data, are marshaled and shipped to the remote node for execution. The

AnekaApplication instance acts as a client side gateway to the Aneka runtime environment, and

forwards the AnekaThread instances for execution when their Start operation is invoked. The main

thread of the MathExample waits until all remote threads are completed, by invoking the Join

operation on the sinThread, cosThread and tanThread instances.

15

Output

Sum = 1.3347829113876

Note that each of the threads is executed independently, and the ordering of execution does not

matter. Repeated runs of this program will always yield the same result. Any debug statements, such

as printing to console, in the methods that compute sin, cos and tan will not appear on your console

as they are executed on remote nodes.

6 Calculating Pi (π) Using a Dartboard
This example is a little more complex than the previous one, but produces a more useful result. It

demonstrates the use of AnekaThreads for calculating the value of pi. This example is analogous to

throwing darts at random points on a dartboard. Each thread independently approximates the value

of pi using this approach, and the cumulative average computed from all threads is used as the

overall approximation for pi. Increasing the number of AnekaThreads, improves the accuracy of pi.

Figure 13: A circle inscribed in a square bounded by the

coordinates (1,1), (1,-1), (-1,-1) and (-1,1)

The process of calculating pi involves throwing darts at random points within the square. A dart

may thus land inside the circle or outside of it, but within the square. A dart that lands inside the

circle is called a hit. The ratio of the area of the circle, πr
2
, to the area of the square, 4 r

2
, is π/4. The

x-y coordinates of the darts are random numbers in the range [-1, 1]. The value of pi is given by the

following equation:

π/4 = (number of hits inside the circle) / (total number of throws)

π = 4 * (number of hits inside the circle) / (total number of throws)

Each thread computes the value of pi by throwing darts a predetermined number of times.

-1 1

 1

-1

16

Increasing the number of threads, will keep the work done by each thread the same, but will increase

the overall accuracy of the cumulative average of pi. The following is the complete solution.

Program 2

 /// <summary>

 /// Class Dart. Represents a dart that is thrown for the given

 /// number of iterations at random points on a dartboard.

 /// </summary>

 [Serializable]

 public class Dart

 {

 /// <summary>

 /// The number of iterations to throw

 /// the dart at random points.

 /// </summary>

 private int iterations;

 /// <summary>

 /// The approximation for the value

 /// of Pi.

 /// </summary>

 private double result;

 /// <summary>

 /// Gets or sets the approximation for

 /// the value of Pi.

 /// </summary>

 public double Result

 {

 get { return result; }

 set { result = value; }

 }

 /// <summary>

 /// Creates and instance of <see cref="T:Aneka.Examples.PiCalculator.Dart"/>

 /// </summary>

 /// <param name="iterations">The number of iterations to throw

 /// the dart at random points</param>

 public Dart(int iterations)

 {

 this.iterations = iterations;

 }

 /// <summary>

 /// Throws the dart at random points for the

 /// specified number of iterations.

 /// </summary>

 public void Fire()

 {

 int hit = 0;

 Random rand = new Random();

 for (int i = 0; i < this.iterations; i++)

 {

 double x = rand.NextDouble() * 2 - 1;

 double y = rand.NextDouble() * 2 - 1;

17

 if ((x * x) + (y * y) <= 1.0)

 {

 hit++;

 }

 }

 this.result = 4.0 * ((double)hit / (double)iterations);

 }

 }

 /// <summary>

 /// Class Dartboard. Represents a dartboard to which a collection of darts

 /// can be thrown. Each of the darts thrown in encapsulated in an AnekaThread

 /// instance and executed on the remote runtime environment.

 /// </summary>

 public class Dartboard

 {

 /// <summary>

 /// The application configuration

 /// </summary>

 private Configuration configuration;

 /// <summary>

 /// Creates an instance of Dartboard.

 /// </summary>

 /// <param name="schedulerUri">The uri to Aneka's scheduler

 /// </param>

 public Dartboard(Uri schedulerUri)

 {

 configuration = new Configuration();

 configuration.SchedulerUri = schedulerUri;

 }

 /// <summary>

 /// Creates a list of AnekeThread instances for each of the darts

 /// specified by <paramref name="noOfDarts"/>, submits them for execution

 /// on the Aneka runtime, and composes the final result by calculating the

 /// cumulative average value of pi.

 /// </summary>

 /// <param name="noOfDarts">The number of darts to throw. That is the number

 /// of AnekaThread instances to execute on the remote runtime

 /// environment</param>

 /// <param name="iterations">The number of iterations for each of the

 /// darts</param>

 /// <returns>The cumulative average of pi</returns>

 public double ThrowDarts(int noOfDarts, int iterations)

 {

 // Create application and computation threads

 AnekaApplication<AnekaThread, ThreadManager> application = new

 AnekaApplication<AnekaThread, ThreadManager>(configuration);

 IList<AnekaThread> threads = this.CreateComputeThreads(application,

 noOfDarts, iterations);

 // execute threads on Aneka

 this.ExecuteThreads(threads);

 // calcualate cumulative average of pi

 double pi = this.ComposeResult(threads);

18

 // stop application

 application.StopExecution();

 return pi;

 }

 /// <summary>

 /// Creates AnekeThread instances for each of the specified number of

 /// darts. These threads are initalized to execute the Dart.Fire() method on

 /// the remote node.

 /// </summary>

 /// <param name="application">The AnekaApplication instance

 /// containing the application configuration</param>

 /// <param name="noOfDarts">The number of darts to throw. That is, the

 /// number of instances of AnekaThread to create</param>

 /// <param name="iterations">The number of iterations for each of the darts

 /// thrown</param>

 /// <returns>A list of AnekaThread instances</returns>

 private IList<AnekaThread> CreateComputeThreads(

AnekaApplication<AnekaThread, ThreadManager> application,

 int noOfDarts, int iterations)

 {

 IList<AnekaThread> threads = new List<AnekaThread>();

 for (int x = 0; x < noOfDarts; x++)

 {

 Dart dart = new Dart(iterations);

 AnekaThread thread = new AnekaThread(dart.Fire, application);

 threads.Add(thread);

 }

 return threads;

 }

 /// <summary>

 /// Executes the list of AnekaThread instances

 /// on the Aneka runtime environment.

 /// </summary>

 /// <param name="threads">The list of AnekaThread

 /// instances to execute</param>

 private void ExecuteThreads(IList<AnekaThread> threads)

 {

 foreach (AnekaThread thread in threads)

 {

 thread.Start();

 }

 }

 /// <summary>

 /// Composes the resulting value of pi by calculating the cumulative average

 /// computed by each of the AnekaThread instances.

 /// This method pauses until all threads have completed execution.

 /// </summary>

 /// <param name="threads">The list of instances that were submitted for

 /// execution</param>

 /// <returns>The average value of pi</returns>

 private double ComposeResult(IList<AnekaThread> threads)

 {

 // wait till all threads complete..

 foreach (AnekaThread thread in threads)

19

 {

 thread.Join();

 }

 double total = 0;

 foreach (AnekaThread thread in threads)

 {

 Dart dart = (Dart)thread.Target;

 total += dart.Result;

 }

 return total / threads.Count;

 }

 /// <summary>

 /// The main entry point to the application.

 /// </summary>

 /// <param name="args">Currently requires no command

 /// line arguments.</param>

 static void Main(string[] args)

 {

 Uri uri = new Uri("tcp://400w-ICT0217-09:9090/Aneka");

 Dartboard dboard = new Dartboard(uri);

 double pi = dboard.ThrowDarts(25, 3000);

 Console.WriteLine("Value of pi = " + pi);

 Console.ReadKey();

 }

}

The class Dartboard controls the execution of AnekaThread instances on remote nodes. The

method ThrowDarts takes the number of darts and the repetitions per dart as parameters. An

AnekaThread is created for each dart and executed on a remote node for the given number of

repetitions. Note how a List is used to maintain the collection of AnekaThreads in the program. The

method ExecuteThreads iterates through this list to start all threads, and the method ComposeResult

iterates through the list to join all threads with the main application thread before calculating the

cumulative average for pi.

Output

Run 1:

Value of pi = 3.13797333333333

Run 2:

Value of pi = 3.15202666666667

Run 3:

Value of pi = 3.13845333333333

20

Note that multiple runs of the program results in slightly different but nevertheless fairly

accurate values for pi. You may increase this accuracy by either using more AnekaThreads, or

increasing the work done by each AnekaThread.

7 Matrix Multiplication
A classic problem for parallel computing, matrix multiplication has many practical applications

in numerous fields. The following example demonstrates matrix multiplication using AnekaThreads.

While there are many strategies for decomposing the work across different threads, the method

described below uses a two-dimensional decomposition:

Figure 14: Multiplying two square matrices.

Each element of the resulting matrix, C, is computed by multiplying the corresponding row and

column vectors of matrix A and matrix B. Each of these computations is carried out by a separate

instance of AnekaThread on a remote node. Multiplying two square matrices of dimension n will

thus result in n × n AnekaThreads. The code listing below presents the solution.

Program 3

 /// <summary>

 /// Class Matrix. Represents a square matrix where

 /// each element occupies a slot in a two-dimensional array.

 /// </summary>

 [Serializable]

 public class Matrix

 {

 /// <summary>

 /// Array of elements in the matrix.

 /// </summary>

 private double[,] data;

 /// <summary>

 /// Gets or sets the 2D array containting

 /// the elements in the matrix.

 /// </summary>

 public double[,] Data

 {

 get { return this.data; }

 set { this.data = value; }

 }

× =

Matrix A Matrix B Matrix C

21

 /// <summary>

 /// The size of the square matrix.

 /// </summary>

 private int size;

 /// <summary>

 /// Gets or sets the size of the

 /// square matrix.

 /// </summary>

 public int Size

 {

 get { return this.size; }

 set { this.size = value; }

 }

 /// <summary>

 /// Creates a new square matrix of dimension

 /// <paramref name="size"/>

 /// </summary>

 /// <param name="size">

 /// The dimension of square matrix.

 /// </param>

 public Matrix(int size)

 {

 data = new double[size, size];

 this.size = size;

 }

 /// <summary>

 /// Initializes the matrix with

 /// random doubles between 0 to 10.

 /// </summary>

 public void InitRandom()

 {

 Random rand = new Random();

 for (int x = 0; x < size; x++)

 {

 for (int y = 0; y < size; y++)

 {

 data[x, y] = rand.NextDouble() * 10;

 }

 }

 }

 /// <summary>

 /// Prints the elements in the matrix

 /// to the console.

 /// </summary>

 public void Print()

 {

 for (int x = 0; x < size; x++)

 {

 for (int y = 0; y < size; y++)

 {

 Console.Write(data[x, y].ToString("0.00"));

 if (y < size - 1)

 {

 Console.Write(", ");

22

 }

 }

 Console.WriteLine();

 }

 }

}

 /// <summary>

 /// Class RowColumnMultiplier. Multiplies a row matrix with a

 /// column matrix to produce a matrix with one element.

 /// </summary>

 [Serializable]

 public class RowColumnMultiplier

 {

 /// <summary>

 /// A row matrix to multiply

 /// </summary>

 private double[] row;

 /// <summary>

 /// A column matrix to multiply

 /// </summary>

 private double[] column;

 /// <summary>

 /// The result of row-column multiplication

 /// </summary>

 private double result;

 /// <summary>

 /// Gets the result of the row-column

 /// multiplication

 /// </summary>

 public double Result

 {

 get { return this.result; }

 }

 /// <summary>

 /// Creates a new RowColumnMultiplier

 /// </summary>

 /// <param name="row">The row to multiply</param>

 /// <param name="column">The column to multiply</param>

 public RowColumnMultiplier(double[] row, double[] column)

 {

 this.row = row;

 this.column = column;

 }

 /// <summary>

 /// Multiplies the row and column matrices

 /// </summary>

 public void DoMultiply()

 {

 // row and column are of the same dimension

 for (int x = 0; x < row.Length; x++)

 {

 this.result += row[x] * column[x];

 }

 }

23

}

 /// <summary>

 /// Class MatrixMultiplier. Multiplies two square matrices, where each element

 /// in the resulting matrix, C, is computed by multiplying the corressponding

 /// row and column

 /// </summary>

 public class MatrixMultiplier

 {

 /// <summary>

 /// The application configuration

 /// </summary>

 private Configuration configuration;

 /// <summary>

 /// Creates an instance of MatrixMultiplier

 /// </summary>

 /// <param name="schedulerUri">The uri to the Aneka scheduler</param>

 public MatrixMultiplier(Uri schedulerUri)

 {

 configuration = new Configuration();

 configuration.SchedulerUri = schedulerUri;

 }

 /// <summary>

 /// Multiplies two matrices A and B and returns the resulting matrix C. This

 /// method creates a list of AnekaThread instances to compute each of the

 /// elements in Matrix C. These threads are submitted to the Aneka runtime

 /// for execution and the results of each of these executions are used to

/// compose the resulting matrix C.

 /// </summary>

 /// <param name="matrixA">Matrix A</param>

 /// <param name="matrixB">Matrix B</param>

 /// <returns>The result, Matric C</returns>

 public Matrix Multiply(Matrix matrixA, Matrix matrixB)

 {

 // Create application and computation threads

 AnekaApplication<AnekaThread, ThreadManager> application = new

 AnekaApplication<AnekaThread, ThreadManager>(configuration);

 IList<AnekaThread> threads = this.CreateComputeThreads(application,

 matrixA, matrixB);

 // execute threads on Aneka

 this.ExecuteThreads(threads);

 // gather results

 Matrix matrixC = this.ComposeResult(threads, matrixA.Size);

 // stop application

 application.StopExecution();

 return matrixC;

 }

 /// <summary>

 /// Creates AnekaThread instances to compute each of the

 /// elements in the resulting matrix C. These threads are initalized to

24

/// execute RowColumnMultiplier’s DoMultiply method on the remote node.

 /// </summary>

 /// <param name="application">The AnekaApplication instance containing the

 /// application configuration</param>

 /// <param name="matrixA">Matrix A</param>

 /// <param name="matrixB">Matric B</param>

 /// <returns>The result, Matrix C</returns>

 private IList<AnekaThread> CreateComputeThreads(

AnekaApplication<AnekaThread, ThreadManager> application,

 Matrix matrixA, Matrix matrixB)

 {

 IList<AnekaThread> threads = new List<AnekaThread>();

 int dimension = matrixA.Size;

 for (int row = 0; row < dimension; row++)

 {

 double[] rowData = this.ExtractRow(matrixA.Data, row, matrixA.Size);

 for (int column = 0; column < dimension; column++)

 {

 double[] columnData = this.ExtractColumn(matrixB.Data, column,

 matrixB.Size);

 RowColumnMultiplier rcMultiplier = new RowColumnMultiplier

 (rowData, columnData);

 AnekaThread anekaThread = new AnekaThread

(rcMultiplier.DoMultiply, application);

 threads.Add(anekaThread);

 }

 }

 return threads;

 }

 /// <summary>

 /// Executes the list of AnekaThread instances on the Aneka runtime

 /// environment.

 /// </summary>

 /// <param name="threads">The list of AnekaThread instances to

 /// execute</param>

 private void ExecuteThreads(IList<AnekaThread> threads)

 {

 foreach (AnekaThread thread in threads)

 {

 thread.Start();

 }

 }

 /// <summary>

 /// Composes the resulting matrix C. This method pauses until all elements

 /// of matrix C have been computed. The results of each of these executions

 /// are then used to compose matric C.

 /// </summary>

 /// <param name="threads">The list of AnekaThread instances that were

 /// submitted for execution</param>

 /// <param name="size">The size of the resulting matrix C</param>

 /// <returns>The result, Matrix C</returns>

 private Matrix ComposeResult(IList<AnekaThread> threads, int size)

 {

 // wait till all threads complete..

25

 foreach (AnekaThread thread in threads)

 {

 thread.Join();

 }

 // compose resultant matrix

 Matrix matrixC = new Matrix(size);

 for (int row = 0; row < size; row++)

 {

 for(int column = 0; column < size; column++)

 {

 AnekaThread thread = threads[(row * size) + column];

 RowColumnMultiplier rcMultiplier =

 (RowColumnMultiplier)thread.Target;

 matrixC.Data[row, column] = rcMultiplier.Result;

 }

 }

 return matrixC;

 }

 /// <summary>

 /// Extracts a row from a two-dimensional array.

 /// </summary>

 /// <param name="array">The two-dimensional array</param>

 /// <param name="rowIndex">The index of the row to extract</param>

 /// <param name="length">The length of the row to extract</param>

 /// <returns>A one-dimensional array</returns>

 private double[] ExtractRow(double[,] array, int rowIndex, int length)

 {

 double[] row = new double[length];

 for (int x = 0; x < length; x++)

 {

 row[x] = array[rowIndex, x];

 }

 return row;

 }

 /// <summary>

 /// Extracts a column from a two-dimensional array.

 /// </summary>

 /// <param name="array">The two-dimensional array<</param>

 /// <param name="columnIndex">The index of the column to extract</param>

 /// <param name="length">The length of the column to extract</param>

 /// <returns>A one-dimensional array</returns>

 private double[] ExtractColumn(double[,] array, int columnIndex, int length)

 {

 double[] column = new double[length];

 for (int x = 0; x < length; x++)

 {

 column[x] = array[x, columnIndex];

 }

 return column;

 }

 /// <summary>

 /// The main entry point to the application

 /// </summary>

 /// <param name="args"></param>

 static void Main(string[] args)

 {

26

 Matrix matrixA = new Matrix(10);

 Matrix matrixB = new Matrix(10);

 matrixA.InitRandom();

 matrixB.InitRandom();

 Uri schedulerUri = new Uri("tcp://localhost:9090/Aneka");

 MatrixMultiplier multiplier = new MatrixMultiplier(schedulerUri);

 Matrix matrixC = multiplier.Multiply(matrixA, matrixB);

 matrixC.Print();

 Console.ReadKey();

 }

 }

Instances of the class Matrix are used to represent the square matrices A, B and C. The elements

are stored in a two-dimensional array and can be initialized with random values between 0 and 10.

The method DoMultiply in class RowColumnMultiplier carries out the actual computation of an

element in the resulting matrix C, by multiplying a single row and column in matrices A and B.

Note that this class implements the serializable interface allowing instances to be marshaled and

shipped to the execution nodes in the Aneka runtime environment, where they will be executed as

an AneakThread. Finally, the class MatrixMultiplier is responsible for decomposing the problem

into smaller units work by creating AnekaThreads to compute each of the elements in the resulting

matrix C. The following is the output generated as a result of multiple two matrices of dimension

10x10, each initialized with random numbers.

Output

190.47, 194.68, 119.38, 64.72, 158.61, 90.76, 145.67, 150.65, 99.46, 178.52

285.89, 264.89, 266.50, 133.85, 247.26, 133.39, 203.49, 188.56, 192.71, 283.68

303.57, 324.57, 353.44, 170.24, 308.25, 223.62, 304.64, 185.23, 226.89, 423.50

154.51, 124.76, 125.75, 77.30, 144.43, 91.86, 110.69, 79.06, 86.55, 157.74

207.68, 156.19, 156.86, 114.02, 213.76, 116.95, 123.23, 132.47, 131.18, 223.53

251.74, 258.54, 231.65, 134.63, 246.85, 170.58, 202.56, 165.76, 170.45, 292.08

203.49, 186.40, 153.71, 69.45, 150.81, 103.40, 164.84, 136.66, 93.65, 212.21

335.58, 267.99, 192.95, 126.12, 238.13, 118.63, 145.27, 231.51, 183.32, 285.00

215.20, 274.21, 225.08, 128.53, 258.47, 169.15, 206.73, 210.35, 214.25, 285.23

273.68, 214.88, 264.08, 168.33, 299.64, 172.47, 196.59, 165.18, 175.61, 319.92

27

8 Summary
This tutorial introduced you to Aneka’s Thread Programming Model. We looked at some of the

fundamental concepts in both local and distributed thread programming. AnekaThreads provide a

similar interface to the local Thread class in .Net and allows you to program in much the same

manner. Distributed threads are however fundamentally different, and it is important to understand

the tradeoffs when writing parallel applications.

9 Exercises

Objective Questions

1. A ______ is an instance of a program in execution. A ______ is a dispatchable unit of

 work that can be schedule by the CPU.

2. An AnekaThread is a distributed thread that executes on a ______ machine.

3. The ______ method in the AnekaThread class starts the thread.

4. The ______ method in the AnekaThread class joins the thread to the main application

 thread.

5. A process can contains more than one local thread at the same time: True or False.

6. A process can contains more than one distributed AnekaThread at the same time: True or

 False.

7. AnekaThreads support thread priorities: True or False.

8. The only synchronization mechanism supported by AnekaThreads is through the ______

 method.

9. An AnekaThread requires a _____ delegate as one of its parameters.

10. Unlike distributed threads, local threads can coordinate their work with each other using

 synchronization mechanisms such as locking and _____.

Review Questions

11. What are threads? Briefly explain the differences between a thread and a process.

12. Briefly explain the differences between local and distributed threads.

13. What are the challenges in developing parallel applications?

14. Explain how you would go about designing and developing a parallel application.

15. What are the limitations of distributed threads compared to local threads?

Programming Problems

16. Modify the example for calculating Pi so that the number of darts and repetitions are

 passed as command line arguments to the program.

17. Modify the example for matrix multiplication so that the size of the square matrix is passed

 as a command line argument to the program.

18. Remodel and implement the example for trigonometric calculations, such that

 MathExample functions as a multi-threaded server that listens to computation requests

 from clients via sockets, and forwards them to the Aneka runtime for execution.

19. Improve the example for matrix multiplication to multiply matrices with different, but

 compatible dimensions.

28

Group Project

20. Mandelbrot sets are known as iterative fractals, which when graphically rendered produces

 and image as shown below. Study the literature on Mandelbrot sets and implement a

 program to render its graphical representation using AnekaThreads.

.

Figure 15: Graphical rendering of the Mandelbrot set.

