2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)
A Framework for Privacy-Aware Computing on
Hybrid Clouds with Mixed-Sensitivity Data

Xianggiang Xu
School of Engineering and Computer Science
Washington State University
Vancouver, WA 98686
Email: xiangqgiang.xu@wsu.edu

Abstract—Security and privacy have long been the primary
concerns of cloud computing platforms. Hybrid clouds provide
potentials for handling data separately based on their sensitivity,
harnessing the heterogeneous architecture. In this paper, we
design and implement a privacy-aware framework to address
data privacy challenges by supporting sensitive data segregation
on hybrid clouds. Specifically, we model data sensitivity in a
comprehensive and dynamic manner using a set of tagging
mechanisms, which include a coarse-grained file level tagging,
a fine-grained line level tagging, temporal and spatial tagging.
The framework can also process data dynamically generated on-
the-fly. We demonstrate the effectiveness of this framework using
a big data application, and the experimental results show that
the privacy-aware framework successfully enables data sensitivity
protection while providing good performance.

Keywords—Hybrid Clouds, Privacy, Data Sensitivity, Tagging,
MapReduce

I. INTRODUCTION

Cloud computing has recently emerged as a new computing
paradigm which fundamentally changes the way resources are
shared in a large scale system. The rapidly growing availability
of public clouds has significantly increased the computa-
tional/storage capacity of regular users, implicitly leading to
the popularity of big data applications. However, a number of
inevitable risks and challenges have been introduced by this
new computing paradigm, which — to a large extent — un-
dermine the effectiveness of the traditional security protection
mechanisms. Security and privacy issues, such as availability,
confidentiality, data integrity, control and audit for security on
clouds, create obstacles for delivering resources to users in
a secure way. A recent security threat happened in August
2014, when hackers exploited Find My iPhone service, brute-
forced users’ Apple IDs and accessed their iCloud data. Large
amounts of private information that had been synced to iCloud
storage were revealed [12].

Besides the security issues, privacy also presents challenges
for the adoption of cloud computing. The cloud techniques
cannot be thoroughly exploited unless these privacy challenges
can be addressed properly. On the one side, organizational
data contains sensitive information which cannot be shared
with cloud service providers without proper privacy protection.
Yet on the other side, cloud service providers do not offer
high-level security assurance. For instance, in a big data
computation, a significant amount of computation workload
does contain sensitive information. The exposure of these

978-1-4799-8937-9/15 $31.00 © 2015 IEEE
DOI 10.1109/HPCC-CSS-ICESS.2015.110

1344

Xinghui Zhao
School of Engineering and Computer Science
Washington State University
Vancouver, WA 98686
Email: x.zhao@wsu.edu

sensitive data in either the public storage service or the process
of transmitting results can possibly violate the security and
privacy standards a user would expect. Moreover, although
the heterogeneous architecture of cloud computing, e.g. hybrid
clouds, provides potentials for security and privacy protection,
it inevitably increases the complexity of data processing. As
a result, most data-intensive frameworks, including MapRe-
duce [3], do not support hybrid clouds.

In this paper, we propose a privacy-aware framework on
hybrid clouds to guarantee data privacy by segregating the
sensitive data from the rest, and processing the sensitive data
on the private cloud only. Specifically, the sensitive data can
be tagged and retained on the private cloud so that data privacy
can be protected, and a fraction of computations which only re-
quires non-sensitive data can be off-loaded to the public cloud
for better performance. We have developed a set of tagging
mechanisms to represent data sensitivity at different granu-
larities, in different scenarios. These include coarse-grained
file-level tagging, fine-grained line-level tagging, temporal and
spatial tagging. File-level tagging and line-level tagging are
used to tag sensitivity at different granularities. Temporal and
spatial tagging are used in dynamic scenarios where sensitivity
changes over time and space. These mechanisms aim for
providing a comprehensive privacy protection. In addition,
we propose a simple performance optimization model for
achieving better performance while the data privacy protection
is guaranteed. Our framework is built using MapReduce.NET
on Aneka hybrid cloud [7]. We use Amazon EC2 as the public
clouds and a local VMware clouds as the private clouds. We
have evaluated our framework using a big data application, and
designed experiments to exercise both static tagging, where
data are available for processing, and dynamic tagging, where
data are generated at run-time. The experimental results show
that our framework can effectively protect the data privacy for
both static and dynamic data with only minimum overhead
comparing to the public Amazon EC2 clouds. Our framework
also shows good scalability in terms of sensitivity level.

The rest of the paper is organized as follows. Section
IT reviews related work. The design and implementation of
our privacy-aware framework is presented in Section III. In
Section IV, we use a big data application to evaluate our
framework in different sensitivity settings. Finally, Section V
concludes the paper and discusses future directions of this
research.

IEEE
computer
® psouety

II. RELATED WORK

Security and privacy issues have long been the major
concern in cloud computing ever since it has emerged. A
common approach to address the data security and privacy
challenges is to encrypt data before transmission to the public
cloud. However, traditional encryption techniques do not allow
computation to be carried out on the encrypted data [13].
Therefore, users must download the data from the cloud,
decrypt before they can run computations on them, which
is obviously inefficient. Traditional cryptographic techniques
could only perform limited operations on the encrypted data,
therefore, these approaches can be only applied to a limited
number of applications. Examples of these include secure
and private sequence comparison [1] which is a protocol for
sequence comparisons that no party could leak their own
private sequence information to others, and encrypted data
searching [11], which is a cryptographic scheme for search-
ing encrypted data in a cryptographic system. In addition,
homomorphic encryption is very expensive for large-scale
computations [4]. Overall, the secret-sharing techniques can
address the security and privacy issue to some extent, however,
these approaches require significant amount of data to be
transmitted over the network [6]. Therefore, they are not
scalable when the size of the data to be processed increases.

Data segregation is another type of approach besides en-
cryption. Airavat [9] addresses data privacy challenges by
setting a mathematical boundary for potential leakage and
violations. It ensures mandatory access control and provides
different policies for processing sensitive data. Airavat protects
data privacy from violations or leakage by confining users’
computations, and ensures that the computation outputs do
not violate the privacy of inputs [5]. The limitation of Airavat
is that it cannot confine all kinds of computations which are
performed by untrusted code [9].

Unlike Airavat, Sedic [14] trusts the cloud platform, and
focuses on protecting sensitive data from the public cloud. A
security mechanism is proposed to protect sensitive data on
hybrid clouds. Sedic addresses data sensitivity challenges by
pre-labeling input data, duplicating all data to the public cloud
and the private cloud, while excluding sensitive data from
the public cloud. In a computation process, mappers operate
data on both public cloud and private cloud, but it sends all
temporary results back to the private cloud to avoid leaking
sensitive data. However, Setic may still leak the locations and
the length of the sensitive data [13]. In addition, iterative
MapReduce is not supported by Sedic [3].

Among all data segregation based approaches, Tagged-
MapReduce [13] is closely related to our work. Tagged-
MapReduce addresses the data privacy challenges by extend-
ing MapReduce to support secure computing with mixed-
sensitivity data on hybrid clouds. Different from Sedic,
Tagged-MapReduce presents a general security framework
for addressing data sensitivity challenges by using explicit
tagging. This tagging mechanism protects data sensitivity since
sensitive data are separated from the public cloud. Sensitive
data will be tagged and retained on the private cloud only. As
a result, the risk of leaking data privacy can be reduced for
privacy-aware applications. Comparing to Tagged-MapReduce,
our work supports more comprehensive types of tags, including

1345

coarse-grained file tags, fine-grained line tags, temporal and
spatial tags, as well as combinations of those types.

III. PRIVACY-AWARE HYBRID CLOUD FRAMEWORK

In a large number of applications, privacy issues are
associated with users’ data. A key to secured execution of
these applications is to protect the semsitive data from any
malicious or unauthorized access. A hybrid cloud system,
which synthesizes both open public clouds and more secured
private clouds, provides a natural platform for address the
privacy issues of big data applications. Specifically, we develop
tagging mechanisms to retain sensitive data on private clouds
during the computation, in order to guarantee privacy while
enjoying the capacity of the public clouds.

A. Sensitivity Tags

Many existing works view sensitivity as a fixed property of
data files. Unlike these approaches, we model data sensitivity
in a more comprehensive and dynamic manner. First, we model
sensitivity at different granularity levels, e.g., file level and line
level. This enables finer-grained control on data segregation.
Second, we allow the sensitivity property of a data file (or
data item) change over time. This is critical for applications
executing in a dynamic environment where users’ requirements
may change over time. Specifically, we use sensitivity tags to
differentiate data in an application. These tags can be used to
specify sensitivity property at different granularities over time.
Table I shows four types of sensitivity tags.

TABLE L SENSITIVITY TAGS

[Sensitivity Tag Type | Description |

TAG; File level sensitivity tag
TAG, Line level sensitivity tag
TAGEL 2] Temporal sensitivity tag (z € {f,})
TAGLeel Spatial sensitivity tag (z € {f,1})

File-level sensitivity tags (I"AG#) can be used to mark sen-
sitive data files. A data file with TAG; attached is considered
sensitive indefinitely, and should be retained on private clouds
for processing. Unlike the file-level tags, a line-level sensitivity
tag (T AG),) is associated with a specific line in a file, instead
of a file as a whole. Line-level sensitivity tags provide a finer-
grained control on the sensitivity of data. Both TAG, and
TAG, are permanent sensitivity tags, which indicate a file
or part of a file contains sensitive data indefinitely. However,
in certain circumstances, the sensitivity property of a data
file/item may change over time. This change, in most of the
cases, reflects changes in either the data or users’ requirements.
For example, a credit card number may only be sensitive
before its expiration date. To represent this type of temporary
sensitivity, we use a temporal sensitive tag TAGY 2! where
the data type x can be either f (file) or [(line). This tag
specifies that the data associated with it is sensitive only during
the time interval [¢;,%s]. Besides temporal information, the
location of a data file may also be associated to its sensitivity.
For example, an organization’s employee list may not be
considered sensitive data within its own internal network, but
it should be protected if located in public storage space. The

spatial sensitivity tag, TAGLCZOC], can be used in this scenario.

Here, [loc] is a list of locations, and x can be either f or [.

This tag specifies that the data it is associated with is sensitive
if it resides on one of the locations in [loc].

Temporal and spatial sensitivity tags can be combined
and attached to the same data. For example, a data file with
both TAGEEI’M and TAG?OC] is considered to be sensitive
during the time interval [tq, 5] no matter where it is located.
In addition, it is also sensitive when it is located on one
of the locations in [loc] despite the time. A hybrid tag,
TAGELI0C heans that a data file is sensitive if during
time interval [t1,¢2] it is located in [loc].

These sensitivity tags, when attached to data, can precisely
represent sensitivity information over time and space, at differ-
ent granularities. In addition, different sensitivity tags can be
logically reduced based on their semantics. Suppose F is a file
which consists n lines, L1, Lo, ..., L,, some logical operations
on sensitivity tags of F are shown as follows.

L, -TAG,+ L, -TAG, + ..+ L, -TAG, =F TAGf
X -TAGY™ 4 X - TAGY"™ = X . TAGH"!
X -TAGY) ¢ x . 7AGlec) = x . paglocntec]

The above equations show how multiple fine-grained sensi-
tivity tags can be reduced to a single coarse-grained sensitivity
tag, and how temporal and spatial sensitivity tags can be
reduced, respectively.

B. Tagging Workflow

In cloud computing, the dominate programming paradigm
is MapReduce [3], in which data can be partitioned and
processed in parallel. In the MapReduce programming model,
different data partitions are independent from each other, which
provides a natural platform to integrate our tagging mechanism
into the execution of applications. The key idea is to partition
the input data based on their tags, and then process sensitive
and non-sensitive data accordingly on a hybrid cloud.

Privacy-Aware Pre-processing Hybrid Clouds

Untagged
Input
Files

Public
Clouds

Tagged Data

Simplified
Tag

Sensitive and Non-
sensitive Data
Stacks

Tagging
Analysis

Tagging

Partial
Results

Optimized
Allocation

Data
Segregation

Private
Clouds

Final
Results

Workflow of a MapReduce Application on Privacy-Aware Hybrid

Fig. 1.
Cloud

Figure 1 shows the workflow of a MapReduce application
executed on our privacy-aware framework with sensitivity
tagging. A typical workflow consists of two phases, a privacy-
aware data pre-processing, and an execution phase on both
public and private clouds.

The pre-processing phase aims for segregating data based
on their sensitivity, and then allocate the MapReduce tasks
accordingly to public and private clouds. This phase consists of
four procedures, Tagging, Tagging Analysis, Data Segregation,
and Optimization. The Tagging procedure takes as input the

1346

untagged input files and the configuration of data sensitivity, !
attaches different sensitive tags to files and lines based on
the configuration, and sends the tagged data to the Tagging
Analysis procedure. The Tagging Analysis procedure then
analyzes the sensitivity tags and reduces them if possible,
based on the sensitivity tag operations. After the analysis, the
input data with simplified tags attached are sent to the next
procedure, Data Segregation, which separates data according
to their sensitivity, and forms two data stacks for processing
on hybrid clouds: sensitive data stack, and non-sensitive data
stack. Once the Data Segregation procedure is completed, we
can guarantee privacy as long as all sensitive data stacks
are retained on the private clouds. However, the workload
for the non-sensitive data stacks can be further tuned among
public and private clouds for better overall performance. The
Optimization procedure is for this purpose. It takes as input
the data stacks and optimize the performance by reallocating
the non-sensitive data stacks among public and private clouds.
A detailed description of the optimization can be found in
Section III-C.

The data pre-processing phase forms a workload distribu-
tion between public and private clouds for the execution phase.
During the execution phase, the public clouds and private
clouds process the data allocated to them in parallel. At the
end of the execution, the public clouds send its partial results
to private clouds, which in turn combine results from both
clouds and generate the final results for the application. Note
that the execution of the two phases in our framework can be
running in parallel, in order to process dynamically generated
data. In that scenario, the input files are generated on-the-fly,
and the output result files are also generated at runtime.

C. Performance Optimization

The Data Segregation procedure synthesizes sensitive data
to form the sensitive data stack, and the non-sensitive data
form another data stack. To guarantee privacy, the sensitive
data stack must be processed on the private clouds, but the non-
sensitive data can be allocated to either public or private clouds
without violating the privacy standard. To this end, we develop
a simple optimization model to reallocate the workload of
processing non-sensitive data. Table II outlines the parameter
used in our performance optimization model.

TABLE II. PARAMETERS DESCRIPTION
[Parameter | Description |
D Total data size
d Public data allocated to private clouds

s Ratio of sensitive data (0 < s < 1)

Ryri Data processing rate on private clouds
Rpub Data processing rate on public clouds
Wori ‘Workload on private clouds (in data size)
Wpub Workload on public clouds (in data size)
Communicational time for returning result
Teomm

from public clouds to private clouds

The workload allocated to the private clouds includes
processing all sensitive data and a fraction of non-sensitive
data, specified by d. The rest of non-sensitive data is allocated
on the public clouds. We assume that the performance on the
clouds is relatively stable, which implies that R, and R,

I'This configuration is provided by the user as sensitivity rules of their data.

do not change significantly. % In this case, the execution times
on private and public clouds can be calculated as follows.

T . — Wori _ sxD+d
pre Ryri Rpri
_ Whuwe _ D—d—sxD
TP“” " Rpuy Rpub

Taking into consideration the communication time between
public and private clouds, the total execution time is

T = maz(Tpri, Tpub + Teomm,)

Given the above equations, we can then formulate an
optimization problem which aims for balancing the workload
between public and private clouds, so that the idle time
is minimized, under the constraint that the data privacy is
protected. That is,

minimize
Tidle = |Tpri - (Tpub + T(‘o’m'm)'
subject to
Tpm >0,
Tpub > 07
0<s<1, @)
0<d<Dx(1-s)

Note that if the data to be processed are static files,
the sensitivity ratio s is fixed, and the performance of both
clouds are stable, the optimization procedure only needs to be
executed once. Otherwise, it needs to be invoked periodically
to tune the performance of hybrid clouds at run-time. In a static
scenario, the performance of both clouds, R, and R,,;, can
be obtained by processing a small sample data file. In the
dynamic scenario, where data are generated on the fly, these
parameters can be obtained using the performance during the
previous time interval.

D. System Architecture and Configuration

Our framework is built on top of Aneka [8], a software
which supports the deployment of hybrid clouds. The system
architecture of our privacy-aware hybrid cloud is shown in
Figure 2.

Aneka Hybrid Clouds

——1___»|nodet
master | [<
node.

<

A
worker
node2

e
Clouds (VMware)

‘,7
<---

A

worker
- === node2
master
node
A S~

worker

Public Clouds [——| | node3
(Amazon EC2) | worker
node4

Resource
Allocation Policy:
Data Pre-
processing and

Allocatior

nding

Fig. 2. Privacy-Aware Hybrid Cloud: System Architecture

2If the performance of the clouds is not stable, the optimization procedure
needs to be invoked periodically to capture the dynamicity of the system.

1347

As shown in Figure 2, we use the Aneka platform to
integrate public clouds and private clouds. On both clouds,
MapReduce applications are processed in a standard master-
worker paradigm. For private clouds, we use a VMware cloud,
and we use the same configuration for all nodes: dual-core
processor (2.7 GHz Intel Core i5) with a § GB memory and
500GB disk space. For public clouds, we use the Amazon
EC2 [10] with r3.large instances. The configuration for the
each instance is Intel(R) Xeon CPU E5-2670 v2 @2.50GHz
2.49GHz with al5.25GB RAM.

We have developed a resource allocation policy for the
hybrid clouds, in which we implement and integrate our
sensitivity tagging mechanism and optimization model. This
is the key component of the framework, and serves as the
interface of the entire framework for interacting with users’
MapReduce applications.

IV. EVALUATION

Experiments have been carried out to evaluate the perfor-
mance and scalability of our hybrid cloud framework using a
MapReduce application with real data collected by the Center
for Medicare & Medicaid Services.

A. Dataset and Application

The dataset we use in our experiments is downloaded from
Center for Medicare & Medicaid Services (CMS), the official
U.S. government site, which provides medicare supports, latest
medicare enrollment, benefits and other information [2]. The
dataset of CMS contains data records for the 2013 program
year, which includes payment information and identification
of physicians and hospitals [2]. Table III shows the fields that
each data record contains. 3

TABLE III. DESCRIPTION OF RECORDS
Field Type Key
General Transaction ID integer primary key
Company Name string unique
Payment Amount decimal -
Payment Name string -
Hospital Name string -
Physician Name string -
Physician Specialty string -
Name of Associated Drug string -
Contextual Information string -
Recipient Address string -

The application we use to evaluate our privacy-aware
hybrid cloud framework is a MapReduce application which
calculates the total payment amount for each company in the
dataset. We design two sets of experiments to evaluate the
performance and scalability of our framework under different
scenarios: static tagging and dynamic tagging.

B. Static Tagging

In the static tagging experiments, we assume that the
data to be processed are ready before the execution of the
application.

3Note that the dataset contains more fields than the ones being listed in
Table III. We only included relevant data fields due to the limitation of the
space.

The first set of experiments is carried out to evaluate the
file-level tagging. In these experiments, the size of the dataset
to be processed ranges from 100MB to 1GB. We first divide
the dataset into smaller files, and then assume that certain
percentage (sensitivity ratio s) of these files are sensitive. Our
framework marks those sensitive files with the TAG tags,
and processes all the files accordingly on the hybrid clouds.
For comparison purposes, we also measure the performances
of using public and private clouds only. The experimental
results are shown in Figure 3. When the sensitivity ratio
ranges from 0% to 50%, the performance of our framework
is close to the performance of public cloud only executions,
and the overhead of providing privacy guarantee is negligible.
When the sensitivity ratio is higher than 50%, the overhead is
higher, however, the performance is still much better than using
private clouds only. Note that in reality, for cloud computing
applications, the sensitivity ratio of users’ data rarely goes
higher than 50%.

300

5=0%
5=5%
5=25% —=—
5=50%
$=75% —OS—
Public Only @
Private Only -4

250

200

Performance (SEC)

500
Dataset Size (MB)

600 700 800 900 1000

Fig. 3.
Ratios

File Level Tagging: Performance Comparison for Different Sensitivity

The second set of experiments is for evaluating the fine-
grained line tagging. In these experiments, we assume that
a portion of the companies consider their data sensitive, and
we attach TAG, tags to all the lines associated with those
companies. We then run the application with different sensi-
tivity levels on our framework and measure the performance.
The experimental results are shown in Figure 4. Similar to the
static file tagging, our framework does not introduce significant
overhead comparing to public cloud only executions. Note that
in these experiments, sometimes an increase of sensitivity level
does not increase the execution time, e.g., the experiments with
50% of sensitivity run faster than that of 75% of sensitivity.
This is because the line tagging is based on companies,
instead of file sizes. In other words, in these experiments, the
sensitivity ratio s only represents the percentage of companies
which consider their data sensitive, and it is not as an accurate
reflect in sensitive data size as in file-level tagging. However, in
general, our framework shows good performance for different
sensitivity ratios.

The results from these two sets of experiments illustrate
that for applications which process static data, our privacy-
aware hybrid cloud framework provides privacy protection at
the cost of only a small overhead comparing to the public
clouds, which do not consider data privacy issues. Notably,
when the ratio of sensitive data is low (< 50%), the perfor-
mance of our framework comes close to the Amazon EC2
public clouds.

1348

350

T
5=0%
5=5%
5=25% —=—
5=50%
$=75% —6—
Public Only @
Private Only -4

300

250

200

Performance (SEC)

150

100

50 1 1 1
500 600

Dataset Size (MB)

700 800 900 1000

Fig. 4. Static Line Level Tagging: Performance Comparison for Different
Sensitivity Ratios

C. Dynamic Tagging

We have also carried out two sets of experiments to eval-
uate the performance of our framework in dynamic environ-
ments, which include two scenarios: dynamic data generation,
and dynamic sensitivity ratios.

In the first set of experiments, the data to be processed are
generated on-the-fly. Here, data pre-processing (tagging, anal-
ysis, and reallocation) and computation execution are running
in parallel. Similar to static line tagging, we assume certain
companies’ data are sensitive and tag them on a line bases
when they are generated. We use a parameter data block size
to represent the granularity of control on real-time processing.
Specifically, the framework starts processing data as soon as
a new data block is available. In other words, a data block is
the smallest unit for data processing in the framework. The
smaller the data block size is, the closer the framework is to
real-time processing.

s=0%
s=5%
5=25%
$=50%
5=75%
‘s=100% .

Data Processing Rate (MB/SEC)

50 100 150 200 250 300

Data Block Size (MB)

350 400 450 500

Fig. 5.
Size

Dynamic Line Level Tagging: Data Processing Rate vs. Data Block

Since in this dynamic scenario, the data processing is an
ongoing process, we measure data processing rate as the per-
formance metric for the evaluation. The experimental results
are shown in Figure 5. As expected, the data processing rate
in general decreases when the data sensitivity ratio increases.
Interestingly, when the data block sizes range from 150MB to
250MB, the framework has a higher performance in general,
for all sensitivity ratios. This is because in those cases, the
system reaches a higher parallelism between pre-processing
and execution. Starting from 300MB of data block size, the
system performance starts to converge for all sensitivity ratios.
This fact indicates that our framework does not introduce

more overhead when processing more sensitive data, when the
data are dynamically generated and the data processing unit is
large enough. In this case, the overhead caused by processing
sensitive data is more likely to be offset by the slow availability
rate of the data blocks.

The second set of experiments for dynamic tagging is to
investigate the system performance when sensitivity tags are
added to the system over time. This is particularly interesting
when users’ requirements about sensitivity changes during the
execution of their applications. In these experiments, we set
the data block size to be 200MB. We initiate 110 MapReduce
jobs, ji,jo, ..., j11, each of which processes one data block. In
order to increase the data sensitivity ratio over time, we use
temporal sensitivity tags TAG,Ftl’tz. Specifically, we divide
the companies into 10 groups, g1, g2, ..., g10, €ach with 10%
companies in the dataset. For the data records (lines) which
are associated with g;, we attach temporal sensitivity tag
TAGEC(J 1”)’0(”“’)], where C(j10) represents the completion
time of job jip, and C(j110) is the time when all the jobs
complete. Similarly, data records associated with go, g3 and on
are attached tags TAG}C(]%)’C(]HO)], TAGEC(JBOLC(JHO)] and
so on. This tagging strategy guarantees that the data sensitivity
ratio increases by 10% for every 10-job time interval.

8.5

7.5

Data Processing Rate (MB/SEC)

e e

20 30 40 50 60 70

MapReduce Job ID

80 90 100 110

Fig. 6. Dynamic Line Level Tagging: Date Processing Rate vs. Scalability
of Sensitivity Level

We measure the data processing rate at the end of every
10-job time interval, and the results are shown in Figure 6. The
system performance decreases at the beginning when temporal
sensitivity tags are added, but soon stabilizes when the data
sensitivity ratio is more than 30% (after job j40). These results
illustrate that our privacy-aware hybrid cloud framework is
scalable in terms of handling dynamic sensitivity ratios.

V. CONCLUSION

In this paper, we present a privacy-aware hybrid cloud
framework which supports MapReduce applications on hybrid
clouds. The key component of this approach is a tagging mech-
anism. We represent data sensitivity at different granularities
using different sensitivity tags, including a coarse-grained file-
level sensitivity tag, a fine-grained line-level sensitivity tag,
as well as temporal and spatial sensitivity tags. These sensi-
tivity tags can be combined and logically reduced. We have
integrated this tagging mechanism into Aneka and MapRe-
duce.NET to support hybrid cloud execution of MapReduce
applications. We use a big data application with real data to
evaluate our framework in both static and dynamic scenarios.

1349

The experimental results show that in both scenarios, the
overhead caused by the privacy-aware framework is minimum.
Notably, for the cases where the data sensitivity rate is low, the
performance of our framework comes close to that of Amazon
EC2 public clouds, while still providing privacy protection. In
addition, our framework demonstrates good scalability under
increasing data sensitivity ratios.

Work is ongoing in a number of directions. First, we
are generalizing this framework to accommodate more com-
putations besides MapReduce computations. Second, we are
adding dynamic resource provisioning mechanisms to our
framework to enhance the flexibility. Third, we are applying
this approach to process a variety of data types, e.g., social
network applications with mixed-sensitivity data.

ACKNOWLEDGMENT

The authors would like to thank the generous support of
an Amazon Web Services Research Grant and a WSU Seed
Grant.

REFERENCES

[1] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and Private Sequence
Comparisons,” in Proceedings of the 2003 ACM Workshop on Privacy
in the Electronic Society, ser. WPES *03. New York, NY, USA: ACM,
2003, pp. 39-44.

CMS.gov. (2014) Dataset Downloads. [Online].
http://www.cms.gov/OpenPayments/Explore-the-Data/

[2] Available:

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.
Y. Duan, J. Canny, and J. Zhan, “P4P: Practical Large-scale Privacy-
preserving Distributed Computation Robust Against Malicious Users,”
in Proceedings of the 19th USENIX Conference on Security, ser.
USENIX Security’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 14-28.

C. Dwork. (2006) Differential privacy. [Online].
http://research.microsoft.com/pubs/64346/dwork.pdf

C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, ser. STOC *09. New York, NY, USA: ACM, 2009, pp.
169-178.

M. P. Ltd. (2013) Aneka Installation Guide Aneka 3.0. [Online].
Available: http://www.manjrasoft.com/

Manjrasoft. (2012) Developing MapReduce.NET Applications Aneka
3.0. [Online]. Available: http://www.manjrasoft.com/

I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and Privacy for MapReduce,” in Proceedings of the
7th USENIX Conference on Networked Systems Design and Implemen-
tation, ser. NSDI’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 20-36.

A. W. Service. (2015) Amazon EC2 Instances. [Online]. Available:
http://aws.amazon.com/ec2/instance-types

[4]

[5] Available:

[6]

[71
[8]

[9]

[10]
[11] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” in Proceedings of the 2000 IEEE Sym-
posium on Security and Privacy, ser. SP *00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 44-55.

T. Verge. (2014) Reported iCloud Hack Leaks Hun-
dreds of Nude Celebrity Photos. [Online]. Available:
http://www.theverge.com/2014/9/1/6092089/nude-celebrity-hack

C. Zhang, E.-C. Chang, and R. Yap, “Tagged-MapReduce: A General
Framework for Secure Computing with Mixed-Sensitivity Data on
Hybrid Clouds,” in Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, May 2014, pp. 31-40.

K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan, “Sedic: Privacy-
aware Data Intensive Computing on Hybrid Clouds,” in Proceedings of

the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 515-526.

[12]

[13]

[14]

